Vol. 8, 2023
Radiobiology
PHOTO-INDUCED NEUTROPHIL EXTRACELLULAR TRAPS: THE ROLE OF CYTOCHROMES
Kahramon Mamatkulov, Anka Jevremović, Darya Zakrytnaya, Yersultan Arynbek, Nina Vorobjeva, Grigory Arzumanyan
Pages: 31-35
DOI: 10.37392/RapProc.2023.07
Abstract | References | Full Text (PDF)
In this study, we aimed to investigate the impact of radiation across a
wide range of wavelengths, from UV-A to red visible light, on the role of
neutrophils in inflammatory, autoimmune, and oncological diseases. Our
focus was on understanding the photoacceptance process involving two
cytochromes: cytochrome_b558 and cytochrome_c oxidase. Through the utilization of Raman spectroscopy, we
recorded characteristic Raman frequencies corresponding to various reactive
oxygen species (ROS) and low-frequency lattice vibrational modes for
citrulline. By employing selective inhibitors of NADPH oxidase (apocynin)
and PAD4 (GSK484), we were able to establish that when neutrophils are
exposed to light of different wavelengths, it activates signaling pathways
that lead to the formation of NETs (neutrophil extracellular traps) through
the involvement of NADPH oxidase and PAD4. During the irradiation of
neutrophils, we observed distinct peaks indicating the presence of ROS and
citrulline, suggesting the participation of intracellular ROS during light
exposure. Development of novel drugs aimed at suppressing NETs formation
could potentially inhibit NET formation at sites exposed to UV and visible
light. This could result in a reduction in symptoms related to UV-induced
photoaging and other forms of organ damage.
-
H. Takei, A. Araki, H. Watanabe, A. Ichinose, F. Sendo, “Rapid killing of
human neutrophils by the potent activator phorbol 12-myristate 13-acetate
(PMA) accompanied by changes different from typical apoptosis or necrosis,”
J. Leukoc. Biol., vol. 59, no. 2, pp. 229 – 240, Feb. 1996.
DOI: 10.1002/jlb.59.2.229
PMid: 8603995 -
V. Brinkmann et al., “Neutrophil Extracellular Traps Kill Bacteria,”
Science
, vol. 303, no. 5663, pp. 1532 – 1535, Mar. 2004.
DOI: 10.1126/science.1092385
PMid: 15001782 -
B. E. Steinberg, S. Grinstein, “Unconventional roles of the NADPH oxidase:
signaling, ion homeostasis, and cell death,” Sci. STKE., vol.
2007, no. 379, p. pe11, Mar. 2007.
DOI: 10.1126/stke.3792007pe11
PMid: 17392241 -
B. Pinegin, N. Vorobjeva, V. Pinegin, “Neutrophil extracellular traps and
their role in the development of chronic inflammation and autoimmunity,”
Autoimmun. Rev., vol. 14, no. 7, pp. 633 – 640, Jul. 2015.
DOI: 10.1016/j.autrev.2015.03.002
PMid: 25797532 -
N. V. Vorobjeva, B. V. Pinegin, “Neutrophil extracellular traps: Mechanisms
of formation and role in health and disease,” Biochemistry (Mosc.), vol. 79, no. 12,
pp. 1286 – 1296, Dec. 2014.
DOI: 10.1134/S0006297914120025
PMid: 25716722 -
N. V. Vorobjeva, B. V. Chernyak, NETosis: “Molecular Mechanisms, Role in
Physiology and Pathology,” Biochemistry (Mosc.), vol. 85, no. 10,
pp. 1178 – 1190, Oct. 2020.
DOI: 10.1134/S0006297920100065
PMid: 33202203
PMCid: PMC7590568 -
S. B. Owusu, S. Dupré-Crochet, T. Bizouarn, C. Houée-Levin, L. Baciou,
“Accumulation of Cytochrome b 558 at the Plasma
Membrane: Hallmark of Oxidative Stress in Phagocytic Cells,”
Int. J. Mol. Sci.,
vol. 23,no. 2, 767, Jan. 2022.
DOI: 10.3390/ijms23020767
PMid: 35054950
PMCid: PMC8775928 -
F. Rijken et al., “Pathophysiology of photoaging of human skin: Focus on
neutrophils,” Photochem. Photobiol. Sci., vol. 5, no. 2, pp. 184 –
189, Feb. 2006.
DOI: 10.1039/b502522b
PMid: 16465304 -
G. J. Fisher et al., “Ultraviolet irradiation increases matrix
metalloproteinase-8 protein in human skin in vivo,”
J. Invest. Dermatol
., vol. 117, no. 2, pp. 219 – 226, Aug. 2001.
DOI: 10.1046/j.0022-202X.2001.01432.x
PMid: 11511297 -
S. Cho et al., “Infrared plus visible light and heat from natural sunlight
participate in the expression of MMPs and type I procollagen as well as
infiltration of inflammatory cell in human skin in vivo,”
J. Dermatol. Sci
., vol. 50, no. 2, pp. 123 – 133, May 2008.
DOI: 10.1016/j.jdermsci.2007.11.009
PMid: 18194849 -
S. Skopelja-Gardner et al., “The early local and systemic Type I interferon
responses to ultraviolet B light exposure are cGAS dependent,”
Sci. Rep
., vol. 10, no. 1, 7908, May 2020.
DOI: 10.1038/s41598-020-64865-w
PMid: 32404939
PMCid: PMC7220927 -
S. Skopelja-Gardner et al., “Acute skin exposure to ultraviolet light
triggers neutrophil-mediated kidney inflammation,”
Proc. Natl. Acad. Sci. U.S.A
., vol. 118,
no. 3, e2019097118, Jan. 2021.
DOI: 10.1073/pnas.2019097118
PMid: 33397815
PMCid: PMC7826360 -
S. B. Owusu, S. Dupré-Crochet, T. Bizouarn, C. Houée-Levin, L. Baciou,
“Accumulation of Cytochrome b558 at the Plasma Membrane: Hallmark of
Oxidative Stress in Phagocytic Cells,” Int. J. Mol. Sci., vol. 23, no. 2, 767, Jan. 2022.
DOI: 10.3390/ijms23020767
PMid: 35054950
PMCid: PMC8775928 -
C. Kohchi, H. Inagawa, T. Nishizawa, G. I. Soma, “ROS and innate immunity,”
Anticancer Res., vol. 29, no. 3,
pp. 817 – 821, Mar. 2009.
PMid: 19414314 -
T. I. Karu, “Multiple roles of cytochrome c oxidase in mammalian cells
under action of red and IR-A radiation,” IUBMB Life, vol. 62, no. 8, pp. 607 – 610, Aug. 2010.
DOI: 10.1002/iub.359
PMid: 20681024 -
S. Hallén, P. Brzezinski, “Light-induced structural changes in cytochrome c
oxidase: implication for the mechanism of electron and proton gating,”
Biochim. Biophys. Acta Bioenerg., vol. 1184, no. 2-3, pp. 207 – 218, Mar. 1994.
DOI: 10.1016/0005-2728(94)90225-9
PMid: 8130251 - M. Kato, K. Shinzawa, S. Yoshikawa, “Cytochrome oxidase is a possible photoreceptor in mitochondria,” Photobiochem. Photobiophys., vol. 2, no. 4-5, 263 – 270, 1981.
-
D. Pastore, M. Greco, S. Passarella, “Specific helium-neon laser sensitivity of the purified cytochrome c oxidase,”
Int. J. Radiat. Biol., vol. 76, no. 6, pp. 863 – 870,
Jun. 2000.
DOI: 10.1080/09553000050029020
PMid: 10902741 -
B. Amulic, C. Cazalet, G. L. Hayes, K. D. Metzler,
A. Zychlinsky, “Neutrophil function: From mechanisms to disease,”
Annu. Rev. Immunol
., vol. 30, pp. 459 – 489, 2012.
DOI: 10.1146/annurev-immunol-020711-074942
PMid: 22224774 -
A. S. Rohrbach, D. J. Slade, P. R. Thompson, K. A. Mowen, “Activation of PAD4 in NET formation,” Front.
Immunol., vol. 3, 360, Nov. 2012.
DOI: 10.3389/fimmu.2012.00360
PMid: 23264775
PMCid: PMC3525017 -
M. Freitas, G. Porto, J. L. F. C. Lima, E. Fernandes, “Isolation and
activation of human neutrophils in vitro. The importance of the
anticoagulant used during blood collection,” Clin. Biochem., vol.
41, no. 7-8, pp. 570 – 575, May 2008.
DOI: 10.1016/j.clinbiochem.2007.12.021
PMid: 18226596 -
S. Mütze et al., “Myeloperoxidase-derived Hypochlorous Acid Antagonizes the
Oxidative Stress-mediated Activation of Iron Regulatory Protein 1,”
J. Biol. Chem
., vol. 278, no. 42, pp. 40542 – 40549, Oct. 2003.
DOI: 10.1074/jbc.M307159200
PMid: 12888561 -
М. А. Симонян, М. А. Бабаян, Г. М. Симонян, “Цитохромы b-558 из сыворотки
крови и мембран эритроцитов. выделение, очистка и краткие характеристики,”
Биохимия, том 60, но. 12,
стр. 1977 – 1987, 1995.
(M. A. Simonyan, M. A. Babayan, G. M. Simonyan, “Cytochromes b-558 from blood serum and erythrocyte membranes; isolation, purification and characteristics,” Biochemistry, vol. 60, no. 12, pp. 1977 – 1987, 1995.)
Retrieved from: https://biochemistrymoscow.com/ru/archive/1995/60-12-1977/
Retrieved on: Sep. 12, 1995 -
C. Zang et al., “Ultrafast Proteinquake Dynamics in Cytochrome c,”
J. Am. Chem. Soc
., vol. 131, no. 8,
pp. 2846 – 2852, Mar. 2009.
DOI: 10.1021/ja8057293
PMid: 19203189 -
M. Reth, “Hydrogen peroxide as second messenger in lymphocyte activation,”
Nat. Immunol., vol. 3, no. 12,
pp. 1129 – 1134, Dec. 2002.
DOI: 10.1038/ni1202-1129
PMid: 12447370