Vol. 8, 2023
Radiation Protection
A CONTRIBUTION TO THE CURRENT DEBATE ABOUT THE ADEQUACY OF THE LINEAR-NO-THRESHOLD (LNT) MODEL FOR THE RISK RESULTING FROM RADON EXPOSURE
J. Elío, M. Janik, P. Bossew
Pages: 65-74
DOI: 10.37392/RapProc.2023.14
Abstract | References | Full Text (PDF)
The Linear-No Threshold Hypothesis (LNT) states that risk from ionizing radiation is linearly related to dose with no dose threshold below which there was no risk. The LNT is an important fundament in practical radioprotection and for assessment of population risk, e.g., of estimating lung cancer risk or incidence attributable to exposure to indoor radon. The popularity of the LNT stems largely from its mathematical simplicity and therefore, its practicability. It seems that this has obscured the question of whether it is physically true, or “only” a useful practical rule. Distribution of exposure and dose to radon through the population is strongly right-skew, with the bulk of dose low. Therefore, attribution of risk, i.e., mainly lung cancer incidence, depends strongly on the risk model for low dose. As long as no micro-dosimetric model exists which causally relates incident radiation flux or exposure to radon progeny to a sequence of effects, starting on sub-cellular level, which results in clinical evidence, it is impossible to make statements on the effect of very low doses, since it is in principle impossible to extend empirical epidemiological inference to arbitrarily small doses. Therefore, epidemiological findings are extrapolated towards low doses. The most quoted large-scale epidemiological radon meta-study is Darby et al. (2006), which concludes that the LNT model is statistically compatible with the findings. This has been essentially corroborated by newer studies. However, with availability or more data, there seems to be increasing evidence that the model may not be applicable to estimate risk for low doses, which represent the bulk of exposure, if the objective is assessment of population risk. We review literature about the strongly debated question about validity of the LNT. Data are not publicly available, therefore statistical re-analysis is impossible. However, published information in the form of graphs and statistics allows some hypotheses alternative to the LNT. The debate is so serious because of the political consequences regarding radon abatement policy. We refrain from stating any “alternative truth” but investigate the possible consequences for risk assessment and what they entail for radon regulation and policy, resulting from different risk models.
-
WHO Handbook on Indoor Radon: A Public Health Perspective, WHO,
Geneva, Switzerland, 2009.
Retrieved from: https://www.who.int/publications/i/item/9789241547673
Retrieved on: Jun. 24, 2023 -
Radiation Protection and Safety of Radiation Sources: International
Basic Safety Standards
, Safety Standards No. GSR Part 3, IAEA, Vienna, Austria, 2014.
Retrieved from: www.pub.iaea.org/MTCD/Publications/PDF/Pub1578_web-57265295.pdf
Retrieved on: Jun. 24, 2023 -
The Council of European Union. (Dec. 5, 2013).
Council Directive 2013/59/EURATOM on laying down basic safety standards
for protection against the dangers arising from exposure to ionising
radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom,
96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
Retrieved from: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2014:013:FULL&from=EN
Retrieved on: Jun. 24, 2023 -
G. Cinelli et al., European Atlas of Natural Radiation, 1st ed.,
Publication Office of the European Union, Luxembourg, Luxembourg, 2019.
Retrieved from: https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiation
Retrieved on: Jun. 29, 2023 -
The 2007 Recommendations of the International Commission on
Radiological Protection
, vol. 37, ICRP Publication no. 103, Ottawa, Canada, 2007.
Retrieved from: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20103
Retrieved on: Jun. 28, 2023 -
D. B. Richardson et al., “Lung Cancer and Radon: Pooled Analysis of Uranium
Miners Hired in 1960 or Later,” Environ. Health Perspect., vol.
130, no. 5, 057010, May 2022.
DOI: 10.1289/EHP10669
PMid: 35604341
PMCid: PMC9126132 -
P. Duan et al., “Nonlinear dose-response relationship between radon
exposure and the risk of lung cancer: evidence from a meta-analysis of
published observational studies,” Eur. J. Cancer Prev., vol. 24,
no. 4, pp. 267 – 277, Jul. 2015.
DOI: 10.1097/CEJ.0000000000000066
PMid: 25117725 -
B. Grosche, M. Kreuzer, M. Kreisheimer, M. Schnelzer, A. Tschense, “Lung
cancer risk among German male uranium miners: A cohort study, 1946-1998,”
Br. J. Cancer, vol. 95, no. 9, pp. 1280 – 1287, Nov. 2006.
DOI: 10.1038/sj.bjc.6603403
PMid: 17043686
PMCid: PMC2360564 -
K. Kelly-Reif et al., “Radon and lung cancer in the pooled uranium miners
analysis (PUMA): highly exposed early miners and all miners,”
Occup. Environ. Med.
, vol. 80, no. 7, pp. 385 – 391, Jul. 2023.
DOI: 10.1136/oemed-2022-108532
PMid: 37164624
PMCid: PMC10369304 -
H. J. Muller, The production of mutations, Nobel Prize
organisation, Stockholm, Sweden, 1946.
Retrieved from: https://www.nobelprize.org/prizes/medicine/1946/muller/lecture/
Retrieved on: Jun. 25, 2023 -
E. J. Calabrese, “Muller’s Nobel lecture on dose-response for ionizing
radiation: Ideology or science?,” Arch. Toxicol., vol. 85, no. 12,
pp. 1495 – 1498, Dec. 2011.
DOI: 10.1007/s00204-011-0728-8
PMid: 21717110 -
S. Darby et al., “Radon in homes and risk of lung cancer: Collaborative
analysis of individual data from 13 European case-control studies,”
Br. Med. J.
, vol. 330, no. 7485, pp. 223 – 226, Jan. 2005,
DOI: 10.1136/bmj.38308.477650.63
PMid: 15613366
PMCid: PMC546066 -
Sources, effects and risks of ionizing radiation, UNSCEAR 2012
Report to the General Assembly, with Scientific Annexes, UNSCEAR, New York
(NY), USA, 2015.
Retrieved from: https://www.unscear.org/unscear/en/publications/2012.html
Retrieved on: Jun. 25, 2023 -
K. Kino et al., “Considering Existing Factors That May Cause Radiation
Hormesis at <100 mSv and Obey the Linear No-Threshold Theory at ≥100
mSv,” Challenges, vol. 12, no. 2, 33, Dec. 2021.
DOI: 10.3390/challe12020033 -
R. Nilsson, J. Tong, “Opinion on reconsideration of lung cancer risk from
domestic radon exposure,” Radiat. Med. Prot., vol. 1, no. 1, pp.
48 – 54, Mar. 2020.
DOI: 10.1016/j.radmp.2020.01.001 -
A. M. Block, S. R. Silva, J. S. Welsh, “Low-dose total body irradiation: an
overlooked cancer immunotherapy technique,” J. Radiat. Oncol., vol.
6, no. 2, pp. 109 – 115, Jun. 2017.
DOI: 10.1007/s13566-017-0303-x -
Z. Chen, Z. Wu, T. A. Muluh, S. Fu, J. Wu, “Effect of low-dose total-body
radiotherapy on immune microenvironment,” Transl. Oncol., vol. 14,
no. 8, 101118, Aug. 2021.
DOI: 10.1016/j.tranon.2021.101118
PMid: 34020371
PMCid: PMC8142085 -
L. Dobrzyński, K. W. Fornalski, J. Reszczyńska, “Meta-analysis of
thirty-two case–control and two ecological radon studies of lung cancer,”
J. Radiat. Res., vol. 59, no. 2, pp. 149 – 163, Mar. 2018.
DOI: 10.1093/jrr/rrx061
PMid: 29186473
PMCid: PMC5950923 -
Radiation protection 125: Low dose ionizing radiation and cancer risk
, European Commission, Brussels, Belgium, 2001.
Retrieved from: https://energy.ec.europa.eu/system/files/2014-11/125_0.pdf
Retrieved on: Jun. 25, 2023 -
A. Marín et al., “Bystander effects and radiotherapy,”
Rep. Pract. Oncol. Radiother.
, vol. 20, no. 1, pp. 12 – 21, Jan.-Feb. 2015.
DOI: 10.1016/j.rpor.2014.08.004
PMid: 25535579
PMCid: PMC4268598 -
M. Tubiana, L. E. Feinendegen, C. Yang,
J. M. Kaminski, “The linear no-threshold relationship is inconsistent with
radiation biologic and experimental data,” Radiology, vol. 251, no.
1, pp. 13 – 22, Apr. 2009.
DOI: 10.1148/radiol.2511080671
PMid: 19332842
PMCid: PMC2663584 -
A. Gaziev, G. Shaikhaev, “Limited Repair of Critical DNA Damage in Cells
Exposed to Low Dose Radiation,” in
Current Topics in Ionizing Radiation Research
, M. Nenoi, Eds., Rijeka, Croatia: InTech, ch. 4, 2012, pp. 51 – 80.
DOI: 10.5772/33611 -
Optimisation: Rethinking the Art of Reasonable, Workshop Summary
Report NEA/CRPPH/R(2020)2, NEA, Paris, France, 2020.
Retrieved from: https://www.oecd-nea.org/jcms/pl_60901/optimisation-rethinking-the-art-of-reasonable-workshop-summary-report?details=true
Retrieved on: Jul. 10, 2023 -
A. Rosenberger et al., “On the non-linearity of radon-induced lung cancer,”
deposited at Research Square, Oct. 03, 2022.
DOI: 10.21203/rs.3.rs-1933741/v2 -
L. E. Feinendegen, “Evidence for beneficial low level radiation effects and
radiation hormesis,” Br. J. Radiol., vol. 78, no. 925, pp. 3 – 7,
Jan. 2005.
DOI: 10.1259/bjr/63353075
PMid: 15673519 -
R. E. Thompson, D. F. Nelson, J. H. Popkin, Z. Popkin, “Case-control study
of lung cancer risk from residential radon exposure in Worcester County,
Massachusetts,” Health Phys., vol. 94, no. 3, pp. 228 – 241, Mar.
2008.
DOI: 10.1097/01.HP.0000288561.53790.5f
PMid: 18301096 -
R. E. Thompson, “Epidemiological evidence for possible radiation hormesis
from radon exposure: A case-control study conducted in Worcester, MA,”
Dose-Response, vol. 9, no. 1, pp. 59 – 75, 2011.
DOI: 10.2203/dose-response.10-026.Thompson
PMid: 21431078
PMCid: PMC3057636 -
B. L. Cohen, “A test of the linear-no threshold theory of radiation
carcinogenesis,” Environ. Res., vol. 53, no. 2, pp. 193 – 220,
Dec. 1990.
DOI: 10.1016/S0013-9351(05)80119-7
PMid: 2253600 - B. L. Cohen, “Updates and extensions to tests of the linear-no threshold theory,” Technology, vol. 7. pp. 657 – 672, Jan. 2000.
-
B. L. Cohen, “Test of the Linear-No Threshold Theory: Rationale for
Procedures,” Dose-Response, vol. 3, no. 3, pp. 369 – 390, May
2006.
DOI: 10.2203/dose-response.003.03.007
PMid: 18648621
PMCid: PMC2475951 -
K. Becker, “Health Effects of High Radon Environments in Central Europe:
Another Test for the LNT Hypothesis?,”
Nonlinearity Biol. Toxicol. Med.
, vol. 1, no. 1, pp. 3 – 35, Jan. 2003.
DOI: 10.1080/15401420390844447
PMid: 19330110
PMCid: PMC2651614 -
E. J. Calabrese, “Hormesis: From marginalization to mainstream. A case for
hormesis as the default dose-response model in risk assessment,”
Toxicol. Appl. Pharmacol.
, vol. 197, no. 2, pp. 125 – 136, Jun. 2004.
DOI: 10.1016/j.taap.2004.02.007
PMid: 15163548 -
C. L. Sanders,
Radiation hormesis and the linear-no-threshold assumption
, 1st ed., Heidelberg, Germany: Springer-Verlag Berlin Heidelberg, 2010.
DOI: 10.1007/978-3-642-03720-7 -
M. K. Janiak, M. P. R. Waligórski, “Can Low-Level Ionizing Radiation Do Us
Any Harm?,” Dose-Response, vol. 21, no. 1, pp. 1 – 15, 2023.
DOI: 10.1177/15593258221148013 -
S. M. J. Mortazavi, M. Ghiassi-Nejad, M. Rezaiean, “Cancer risk due to
exposure to high levels of natural radon in the inhabitants of Ramsar,
Iran,” Int. Congr. Ser., vol. 1276, pp. 436 – 437, Feb. 2005.
DOI: 10.1016/j.ics.2004.12.012 -
G. R. W. Denton, S. Namazi, “Indoor Radon Levels and Lung Cancer Incidence
on Guam,” Procedia Environ. Sci., vol. 18, pp. 157 – 166, 2013.
DOI: 10.1016/j.proenv.2013.04.021 -
Radon therapies, German Federal Office for Radiation Protection,
Salzgitter, Germany.
Retrieved from: https://www.bfs.de/EN/topics/ion/environment/radon/effects/therapies.html
Retrieved on: Jul. 04, 2023 -
H. Tempfer, A. Schober, W. Hofmann, H. Lettner, F. Steger, “Biophysical
mechanisms and radiation doses in radon therapy,” in
The Natural Radiation Environment VII
, vol. 7, J. P. McLaughlin, S. E. Simopoulos, F. Steinhäusler, Eds., Amsterdam, Netherlands: Elsevier,
2005, ch. 4, sec. 78, pp. 640 – 648.
DOI: 10.1016/S1569-4860(04)07078-0 -
A. Falkenbach, J. Kovacs, A. Franke, K. Jörgens, K. Ammer, “Radon therapy
for the treatment of rheumatic diseases - Review and meta-analysis of
controlled clinical trials,” Rheumatol. Int., vol. 25, no. 3, pp.
205 – 210, Apr. 2005.
DOI: 10.1007/s00296-003-0419-8
PMid: 14673618 -
A. Maier et al., “Radon Exposure—Therapeutic Effect and Cancer Risk,”
Int. J. Mol. Sci.
, vol. 22, no. 1, 316, Dec. 2020.
DOI: 10.3390/ijms22010316
PMid: 33396815
PMCid: PMC7796069 -
K. Yamaoka, T. Kataoka, “Confirmation of efficacy, elucidation of
mechanism, and new search for indications of radon therapy,”
J. Clin. Biochem. Nutr.
, vol. 70, no. 2, pp. 87 – 92, Mar. 2022.
DOI: 10.3164/JCBN.21-85
PMid: 35400814
PMCid: PMC8921726 -
S. Kojima et al., “Radon Therapy Is Very Promising as a Primary or an
Adjuvant Treatment for Different Types of Cancers: 4 Case Reports,”
Dose-Response
, vol. 17, no. 2, pp. 1–9, Jun. 2019.
DOI: 10.1177/1559325819853163
PMid: 31210758
PMCid: PMC6552369 -
D. Passali, G. Gabelli, G. C. Passali, R. Mösges,
L. M. Bellussi, “Radon-enriched hot spring water therapy for upper and
lower respiratory tract inflammation,” Otolaryngol. Pol., vol. 71,
no. 4, pp. 8 – 13, Aug. 2017.
DOI: 10.5604/01.3001.0010.2242
PMid: 29116046 -
Z. Zdrojewicz, J. J. Strzelczyk, “Radon Treatment Controversy,”
Dose-Response
, vol. 4, no. 2,
pp. 106 – 118, Aug. 2006.
DOI: 10.2203/dose-response.05-025.zdrojewicz
PMid: 18648641
PMCid: PMC2477672 -
Linear no-threshold model, Wikipedia, the free encyclopedia, San
Francisco (CA), USA,
Retrieved from: https://en.wikipedia.org/wiki/Linear_no-threshold_model
Retrieved on: Jul. 04, 2023 -
J. Gaskin, D. Coyle, J. Whyte, D. Krewksi, “Global Estimate of Lung Cancer
Mortality Attributable to Residential Radon,”
Environ. Health Perspect.
, vol. 126, no. 5, 057009, May 2018.
DOI: 10.1289/EHP2503
PMid: 29856911
PMCid: PMC6072010 -
Occupational Intakes of Radionuclides: Part 3, vol. 46, ICRP
Publication no. 137, ICRP, Ottawa, Canada, 2017, pp. 1 – 486.
Retrieved from: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20137
Retrieved on: Jun. 29, 2023 -
J. Elío et al., “The first version of the Pan-European Indoor Radon Map,”
Nat. Hazards Earth Syst. Sci., vol. 19, no. 11, pp. 2451 – 2464,
Nov. 2019.
DOI: 10.5194/nhess-19-2451-2019 -
P. Bossew, “The Geographical Pattern of Local Statistical Dispersion of
Environmental Radon in Europe,” Math. Geosci., spec. issue, 2023.
DOI: 10.1007/s11004-023-10073-x -
P. Bossew et al., “Current topic discussions in radon research,” presented
at the Int. Conf. Radiation and Applications (RAP 2022),
Thessaloniki, Greece, Jun. 2022.
Retrieved from: https://drive.google.com/file/d/1jqIaOMgq_DrM_4zSKKUfShg8KDzWxlNo/view
Retrieved on: Jun. 29, 2023 -
E. Petermann, P. Bossew, B. Hoffmann, “Radon hazard vs. radon risk - On the
effectiveness of radon priority areas,” J. Environ. Radioact.,
vol. 244 – 245, 106833, Apr. 2022.
DOI: 10.1016/j.jenvrad.2022.106833
PMid: 35131623 -
E. Petermann, P. Bossew, “Mapping indoor radon hazard in Germany: The
geogenic component,” Sci. Total Environ., vol. 780, 146601, Aug.
2021.
DOI: 10.1016/j.scitotenv.2021.146601
PMid: 33774294 -
E. Petermann, H. Meyer, M. Nussbaum, P. Bossew, “Mapping the geogenic radon
potential for Germany by machine learning,” Sci. Total Environ.,
vol. 754, 142291, Feb. 2021.
DOI: 10.1016/j.scitotenv.2020.142291
PMid: 33254926 -
R. Gellermann, J. Breckow, “LNT und Strahlenschutz,”
STRAHLENSCHUTZ Prax.
, vol. 1, p. 80f, 2023.
(R. Gellermann, J. Breckow, “LNT and Radiation Protection,” RADIATION PROTECTION Practice , vol. 1, p. 80f, 2023.) -
P. Bossew, E. Petermann, “What is the objective of radon abatement policy?
Revisiting the concept of radon priority areas,” presented at the15th
Int. workshop on the geological aspects of radon risk mapping (GARRM),
Prague, Czech Republic, Sep.2021.
Retrieved from: http://www.radon.eu/workshop2021/pres/bossew_2021.pdf
Retrieved on: Jun. 23, 2023 -
E. Petermann, P. Bossew, N. Suhr, B. Hoffmann, “Estimating national indoor
radon exposure at a high spatial resolution – improvements by a machine
learning based probabilistic approach,” presented at theEGU 2023,
Vienna, Austria, Apr. 2023.
Retrieved from: https://doi.org/10.5194/egusphere-egu23-6423
Retrieved on: Jun. 23, 2023 -
A. Onishchenko, M. Zhukovsky, “The influence of uncertainties of radon
exposure on the results of case-control epidemiological study,”
Int. J. Radiat. Biol
., vol. 95, no. 3, pp. 354 – 359, Mar. 2019.
DOI: 10.1080/09553002.2019.1547846
PMid: 30496022 -
J. S. Puskin, “Smoking as a confounder in ecologic correlations of cancer
mortality rates with average county radon levels,” Health Phys.,
vol. 84, no. 4, pp. 526 – 532, Apr. 2003.
DOI: 10.1097/00004032-200304000-00012
PMid: 12705451