Vol. 8, 2023

Environmental Chemistry

CONCENTRATION OF SELECTED RADIONUCLIDES IN HIGH DUST DEPOSITION AREA: CONSIDERATION OF DEPLETED URANIUM

Abdulaziz Aba, Omar Al-Boloushi, Anfal Ismaeel

Pages: 91-96

DOI: 10.37392/RapProc.2023.19

Fallen dust samples from ten Northern Arabian Gulf locations were analyzed for natural radionuclides and 137Cs using ultra-low background gamma spectrometry. A dust trap of 20 cm diameter collected the samples from ten sites in Kuwait, enabling the determination of radionuclide concentrations. Direct measurement of 234Th estimated 238 U, while the 235U concentration was calculated using the sum peak of 226Ra and 235U of 186 keV gamma line. The calculation of the uranium activity ratio showed that the sample contained natural levels of uranium isotopes. The average concentration of various radionuclides demonstrated significant variation. The median concentrations of7Be, 137Cs, 210Pb, 40K, 224 Ra, 226Ra, 228Ra and 234Th were 1113 ± 148, 11.7 ± 0.6, 434 ± 27, 357 ± 6, 23.4 ± 1.7, 20.2 ± 1.5, 12 ± 2 and 44 ± 1.8 mBq g-1respectively. The measured activity ratios of 137Cs/40K and 7Be/210Pb confirmed the effects of the regional dust sources.
  1. A. Al-Hemoud et al., “Health impact assessment associated with exposure to PM10 and dust storms in Kuwait,” Atmosphere, vol. 9, no. 1, 6, Jan. 2018.
    DOI: 10.3390/atmos9010006
  2. A. Aba, A. Ismaeel, A. Al-Boloushi, H. Al-Shammari, O. Al-Boloushi, “Deposited Rates of Radionuclides,” in Atlas of Fallen Dust in Kuwait, A. Al-Dousari, Eds., 1 st ed., Cham, Switzerland: Springer Cham, 2021, ch. 6, pp. 140 – 176.
    DOI: 10.1007/978-3-030-66977-5_6
  3. A. Al-Hemoud et al., “Sand and dust storm trajectories from Iraq Mesopotamian flood plain to Kuwait,” Sci. Total Environ., vol. 710, 136291, Mar. 2020.
    DOI: 10.1016/j.scitotenv.2019.136291
    PMid: 31911252
  4. What are the WHO Air quality guidelines? Improving health by reducing air pollution, WHO, Geneva, Switzerland, 2021.
  5. A. Al-Dousari, N. Al-Dousari, “Deposited Dust,” in Atlas of Fallen Dust in Kuwait, A. Al-Dousari, Eds., 1 st ed., Cham, Switzerland: Springer Cham, 2021, ch. 2, pp. 47 – 56.
    DOI: 10.1007/978-3-030-66977-5_2
  6. H. Bem, F. Bou-Rabee, “Environmental and health consequences of depleted uranium use in the 1991 Gulf War,” Environ. Int., vol. 30, no. 1, pp. 123 – 134, Mar. 2004.
    DOI: 10.1016/S0160-4120(03)00151-X
    PMid: 14664872
  7. E. G. Daxon et al., Health and Environmental Consequences of Depleted Uranium Use in the U.S. Army: Technical Report, Rep. AEPI-0038, AEPI, Atlanta (GA), USA, 1995.
    Retrieved from: https://www.academia.edu/25782366/Health_and_Environmental_Consequences_of_Depleted_Uranium_Use_in_the_U_S_Army_Technical_Report
    Retrieved on: May 18, 2023
  8. M. A. McDiarmid et al., “Health effects of depleted uranium on exposed Gulf War veterans: a 10-year follow-up,” J. Toxicol. Environ. Health Part A, vol. 67, no. 4, pp. 277 – 296, Feb. 2004.
    DOI: 10.1080/15287390490273541
    PMid: 14713562
  9. A. Bleise, P. R. Danesi, W. Burkart, “Properties, use and health effects of depleted uranium (DU): a general overview,” J. Environ. Radioact., vol. 64, no. 2-3,
    pp. 93 – 112, 2003.
    DOI: 10.1016/s0265-931x(02)00041-3
    PMid: 12500797
  10. Z. Hon, J. Österreicher, L. Navrátil, “Depleted uranium and its effects on humans,” Sustainability, vol. 7, no. 4, pp. 4063 – 4077, Apr. 2015.
    DOI: 10.3390/su7044063
  11. R. R. Parrish et al., “Depleted uranium contamination by inhalation exposure and its detection after ∼ 20 years: Implications for human health assessment,” Sci. Total Environ., vol. 390, no. 1, pp. 58 – 68, Feb. 2008.
    DOI: 10.1016/j.scitotenv.2007.09.044
    PMid: 17976690
  12. L. W. Luckett, “Radiological conditions in areas of Kuwait with residues of depleted uranium,” Health Phys., vol. 90, no. 2, pp. 180 – 181, Feb. 2006.
    DOI: 10.1097/00004032-200602000-00011
  13. A. F. Elsayed, M. T. Hussein, S. A. El-Mongy, H. F. Ibrahim, A. Shazly, “Different Approaches to Purify the 185.7 keV of 235U from Contribution of Another Overlapping γ-Transition,” Phys. Part. Nucl. Lett., vol. 18, no. 2, pp 202 – 209, Mar. 2021.
    DOI: 10.1134/S1547477121020060
  14. A. Aba, A. Ismaeel, “Preparation of in-house calibration source for the use in radioactivity analysis of the environmental samples: consideration of homogeneity,” J. Radioanal. Nucl. Chem., vol. 295, no. 1, pp. 31 – 38, Jan. 2013.
    DOI: 10.1007/s10967-012-1893-9
  15. R. L. Lozano et al., “Mesoscale behavior of 7Be and 210Pb in superficial air along the Gulf of Cadiz (south of Iberian Peninsula),” Atmos. Environ., vol. 80, pp. 75 – 84, Dec. 2013.
    DOI: 10.1016/j.atmosenv.2013.07.050
  16. Y. Y. Ebaid, S. A. El-Mongy, K. A. Allam, “235U–γ emission contribution to the 186 keV energy transition of 226Ra in environmental samples activity calculations,” Int. Cong. Ser., vol. 1276, pp. 409 – 411, Feb. 2005.
    DOI: 10.1016/j.ics.2004.12.020