Vol. 8, 2023

Radiation Measurements

SPECTROSCOPIC ANALYSIS AND CHARGED PARTICLE IDENTIFICATIONS OF THERMAL AND FAST NEUTRON DOSIMETRY USING NUCLEAR TRACK DETECTORS (NTDS)

E. H. Ghanim, S. M. Othman, A. Hussein, H. El-Samman, A. El-Sersy

Pages: 142-149

DOI: 10.37392/RapProc.2023.29

In this work, nuclear track detectors (NTDs) of CR-39 and LR-115 were used in identification of charged particles and determination of doses of fast and thermal neutrons. CR-39 characterizations were carried out using etchant conditions of 6N NaOH at 60°C with VB ≈ 0.9 μm/hr with registration efficiency better than 90 % and critical angle of etching under different removal layer values. In addition, CR-39 NTDs were used in fast neutron registration utilizing their interactions with the constituent atoms of the detector material. Induced-proton track densities (ρT) were registered at different etching times and neutron doses (Dfn) from 1.54 up to ≈ 44 mSv. An exponential relationship between (ρT) and Dfn was found to obey the formula Dfn = 1.27 exp(0.067 ρT). An empirical formula to relate the induced proton energy (Ep) with its (dE/dx)p in CR-39 was found to be Ep=170.031 (dE/dx)p-1.518 MeV/μm. Also, in this work, CR-39 and LR-115 track detectors were used for detection of dose of thermal neutrons obtained through the polymethyle methacrylate sheet (PMMA) moderation of 241Am-Be fast neutrons source with B2O 3 converter. CR-39 and LR-115 NTDs were exposed to thermal neutrons for up to 37 hrs. Four sets of detectors were irradiated at exposure times of 1.5, 18, 21 and 37 hrs. The thermal neutron fluxes were calculated from the induced-ions track density through the concepts of the efficiency factor from the total track density (r T). The equivalent doses (D) of thermal neutrons were deduced using the dose-flux relationship or flux-dose conversion factor. Moreover, 7Li (0.84 MeV) and 42He (1.47 MeV) induced-ion tracks were produced from the interaction of thermal neutrons with boron-covered CR-39 detector. The discrimination between alpha panicles ( 42He -ions) and 7Li-ions was carried out extensively. Data measurements were repeated many times in order to achieve better accuracy. This discrimination (or spectroscopic analysis) is based on an adequate and careful analysis of the acquired data obtained from the circular track diameters induced in CR-39 detectors as a result of thermal-neutron-boron interaction mechanisms. The charged particles (4He, 7Li) identifications were successfully obtained using circular-track diameter analysis method with alpha tracks from 241Am alpha reference source. Although such method is tedious, results are indeed encouraging and certainly recommended. Results of this study are then discussed within the frame work of track formation theories and etching mechanism in NTDs.
  1. A. Al-Sayed et al., “Alpha particle spectrometry based on the mean grey level and visibility of track etch-pit in CR-39 Nuclear Track Detector,” Phys. Scr., vol. 97, no. 5, 055305, Apr. 2022.
    DOI: 10.1088/1402-4896/ac64d0
  2. H. I. El-Naggar, E. H. Ghanim, M. El Ghazaly, T. T. Salama, “On the registration of low energy alpha particle with modified GafChromic EBT2 radiochromic film,” Radiat. Phys. Chem., vol. 191, 109852, Feb. 2022.
    DOI: 10.1016/j.radphyschem.2021.109852
  3. E. H. Ghanim, M. El Ghazaly, H. I. El-Naggar, “Alpha particle detection by Makrofol DE1-1 and CR-39 NTDs: A comparative study,” Radiat. Phys. Chem. , vol. 174, 108902, Sep. 2020.
    DOI: 10.1016/j.radphyschem.2020.108902
  4. I. A. El-Mesady, Y. S. Rammah, A. M. Abdallah, E. H. Ghanim, “Gamma irradiation effect towards photoluminescence and optical properties of Makrofol DE 6-2,” Radiat. Phys. Chem., vol. 168, 108578, Mar. 2020.
    DOI: 10.1016/j.radphyschem.2019.108578
  5. S. L. Guo, B. L. Chen, S. A. Durrani, “Solid-State Nuclear Track Detectors,” in Handbook of Radioactivity Analysis, vol. 1, M. F. L`Annunziata, Eds., 4th ed., Cambridge (MA), USA: Academic Press, 2020, ch. 3, pp. 307 – 407.
    DOI: 10.1016/B978-0-12-814397-1.00003-0
  6. T. S. Soliman, Sh. I. Elkalashy, M. F. Zaki, D. H. Shabaan, “Structural and optical analysis of gamma-induced modification in polycarbonate nuclear track detector,” Phys. Scr., vol. 96, no. 12, 125814, Sep. 2021.
    DOI: 10.1088/1402-4896/ac227d
  7. V. Kumar, R. G. Sonkawade, A. S. Dhaliwal, “Gamma irradiation induced chemical and structural modifications in PM-355 polymeric nuclear track detector film,” Nucl. Instrum. Methods Phys. Res. B, vol. 290, pp. 59 – 63, Nov. 2012.
    DOI: 10.1016/j.nimb.2012.08.029
  8. Y. S. Rammah, A. M. Abdalla, “Study of the optical properties and the carbonaceous clusters in DAM-ADC solid state nuclear track detectors,” Radiat. Phys. Chem., vol. 141, pp. 125 – 130, Dec. 2017.
    DOI: 10.1016/j.radphyschem.2017.06.016
  9. M. F. Zaki, “Gamma-induced modification on optical band gap of CR-39 SSNTD,” J. Phys. D Appl. Phys., vol. 41, no. 17, 175404, Aug. 2008.
    DOI: 10.1088/0022-3727/41/17/175404
  10. Y. S. Rammah, S. E. Ibrahim, E. M. Awad, “Electrical and optical properties of Makrofol DE 1-1 polymeric films induced by gamma irradiation,” Bull. Natl. Res. Cent., vol. 43, 32, Feb. 2019.
    DOI: 10.1186/s42269-019-0071-4
  11. D. Dobrev, J. Vetter, N. Angert, “Electrochemical preparation of metal microstructures on large areas of etched ion track membranes,” Nucl. Instrum. Methods Phys. Res. B, vol. 149, no. 1 – 2, pp. 207 – 212, Jan. 2019.
    DOI: 10.1016/S0168-583X(98)00618-1
  12. S. K. Chakarvarti, J. Vetter, “Template Synthesis-A membrane Based Technology for Generation of Nano-/Micro Materials,” Radiat. Meas., vol. 29, no. 2, pp. 149 – 159, Apr. 1998.
    DOI: 10.1016/S1350-4487(98)00009-2
  13. G. Szeiler et al., “Preliminary results from an indoor radon thoron survey in Hungary,” Radiat. Prot. Dosim., vol. 152, no. 1 – 3, pp. 243 – 246, Nov. 2012.
    DOI: 10.1093/rpd/ncs231
  14. S. A. Durrani, R. llic, Radon Measurements by Etched track Detectors, Hackensack (NJ), USA: World Scientific, 1997.
  15. A. Hussein, “Determination of Uranium and Thorium Concentration in Some Egyptian Rock Samples,” J. Radioanal. Nucl. Chem., vol. 188, no. 4, pp. 255 – 265, Nov. 1994.
    DOI: 10.1007/bf02164886
  16. N. E. Khaled, E. H. Ghanim, Kh. Shinashin, A. R. El-Sersy, “Effect of X-ray energies on induced photo-neutron doses,” Radiat. Eff. Def. Solids, vol. 169, no. 3, pp. 239 – 248, Mar. 2014.
    DOI: 10.1080/10420150.2013.849250
  17. G. W. Phillips et al., “Neutron spectrometry using CR-39 track etch detectors,” Radiat. Prot. Dosim., vol. 120, no. 1 – 4, pp. 457 – 460, Jan. 2006.
    DOI: 10.1093/rpd/nci675
  18. F. Castillo et al., “Fast neutron dosimetry using CR-39 track detectors with polyethylene as radiator,” Radiat. Meas., vol. 50, pp. 71 – 73, Mar. 2013.
    DOI: 10.1016/j.radmeas.2012.09.007
  19. A. R. El-Sersy, S. A. Eman, “Fast-Neutron Spectroscopy Studies using Induced-Proton Tracks in PADC Detectors,” Eur. Phys. J. A, vol. 44, no. 3, pp. 397 – 401, Jun. 2010.
    DOI: 10.1140/epja/i2010-10975-1
  20. A. R. EI-Sersy, N. E. Khaled, S. A. Eman, “Thermal neutron dose determination with source geometry included,” Egypt. J. Biophys., B 12, pp. 131 – 142, 2006.
  21. R. L. Fleischer, P. B. Price, R. M. Walker, Nuclear Tracks in Solids: Principles and application, Berkeley (CA), USA: University of California press, 1975.
    DOI: 10.1525/9780520320239
  22. S. A. Durrani, R. K. Bull, Solid State Nuclear Track Detection. Principles, Methods and Applications, 1st ed., Oxford, UK: Pergamon Press, 1987.
  23. G. F. Knoll, Radiation Detection and Measurement, New York (NY), USA: J. Wiley and Sons, 1979.
  24. K. R. Kase, W. R. Nelson, Concepts of Radiation Dosimetry, New York (NY), USA: Pergamon Press, 1978.
  25. J. F. Ziegler, J. Bierack, “SRIM-The Stopping and Range of Ions in Matter,” in Treatise on Heavy-Ion Science, vol. 6, D. A. Bromley, Eds., 1st ed., New York (NY), USA: Pergamon Press, 1985, ch. 3, pp. 93 – 129.
    DOI: 10.1007/978-1-4615-8103-1_3
  26. J. F. Ziegler, SRIM-The Stopping and Range of Ions in Matter, IBM Res., New York (NY), USA, 1996.
  27. J. F. Ziegler, “SRIM-2003,” Nucl. Instrum. Methods Phys. Res. B, vol. 219 – 220, pp. 1027 – 1036, Jun. 2004.
    DOI: 10.1016/j.nimb.2004.01.208
  28. T. Yamauchi, T. Taniguchi, K. Oда, “Study of Response of CR-39 Detector to Light Ions,” Radiat. Meas., vol. 31, no. 1 – 6, pp. 261 – 264, Jun. 1999.
    DOI: 10.1016/S1350-4487(99)00127-4