Vol. 9, 2024

Radon and Thoron

PARALLEL HALF-YEAR-LONG RADON CONCENTRATION MEASUREMENT AT TCAS IN ZRENJANIN, SERBIA

Iris Borjanović Trusina, Milica Rajačić

Pages: 6-9

DOI: 10.37392/RapProc.2024.02

Radon is a radioactive gas originating from the ground which can permeate enclosed spaces and pose serious health risks for humans when inhaled chronically. At the Technical College of Applied Sciences in Zrenjanin continuous measurements of radon concentration were undertaken during the summer and autumn of 2023. Radon concentrations were monitored in four rooms located in the basement and ground floor levels, covering an area of approximately 4000 m2, where previous short-term tests had indicated the highest radon concentrations. Detectors were positioned approximately 1 meter above the ground and away from doors, windows, walls and heating sources. These rooms remained in normal use throughout the measurement period. Two types of detectors were utilised simultaneously, placed in close proximity to each other. Radon concentrations were assessed using active-type radon detectors branded as Airthings, alongside CR39 track detectors. The radon concentration values obtained with CR39 detectors demonstrated good agreement with the results obtained using Airthings detectors. The statistical Z-test was employed for analysis.
  1. Sources and effects of ionizing radiation, vol. 1, UNSCEAR Report (A/63/46), UNSCEAR, New York (NY), USA, 2010.
    Retrieved from: https://www.unscear.org/docs/reports/2008/09-86753_Report_2008_Annex_B.pdf
    Retrieved on: Apr. 11, 2024
  2. D. Nikezić, “Radon, glavni radioaktivni kontaminant čovekove okoline,” uJoniyujuća zrečenja iz prirode, M. Kovačević, Ur., Beograd, Jugoslavija: Jugoslovensko društvo za zaštitu od zračenja, 1995, poglavlje 11, str. 145 – 190.
    (D. Nikezić, “Radon, main radioactive contaminant of environment” inIonizing radiation from nature, M. Kovačević, Eds., Belgrade, Yugoslavia: Yugoslav association for radiation protection, 1995, ch. 11, pp. 145 – 190.)
    Retrieved from: https://dzz.org.rs/wp-content/uploads/2013/06/1995-JDZZ-Beograd-Jonizujuca-zracenja-iz-prirode.pdf
    Retrieved on: Apr. 11, 2024
  3. Health Effects of Exposure to Radon, Rep. X820576-01-0, Committee on Health Risks of Exposure to Radon (BEIR VI), Washinton D.C., USA, 1999.
    Retrieved from: http://www.nap.edu/catalog/5499.html
    Retrieved on: Apr. 11, 2024
    DOI: 10.17225/5499
  4. WHO Handbook on indoor radon: a public health perspective, WHO, Geneva, Switzerland, 2009.
    Retrieved from: https://iris.who.int/bitstream/handle/10665/44149/9789241547673_eng.pdf?sequence=1
    Retrieved on: Apr. 11, 2024
  5. I. Borjanović, L. Manojlović, M. Kovačević, “Seasonal measurements of radon concentration level in the period of spring at Technical College of Applied Sciences in Zrenjanin,” inBook of Abstr. 10th Jubilee Int. Conf. Radiation in Various Fields of Research (RAD 2022) - summer edition, Herceg-Novi, Montenegro, 2022, p. 124.
    Retrieved from: https://www.rad-conference.org/RAD_2022_Summer_Book_of_Abstracts.pdf
    Retrieved on: Apr. 12, 2024
  6. I. Borjanović, A. Rajić, Ž. Eremić, “Seasonal Measurements of Indoor Radon Concentration Level in the Period of Summer at Technical College of Applied Sciences in Zrenjanin,” in Proc. 11th Int. Conf. Balcan Physical Union (BPU11 PoS), Belgrade, Serbia, 2022, PoS(BPU11)025.
    Retrieved from: https://pos.sissa.it/427/
    Retrieved on: Apr. 12, 2024
  7. I. Borjanović, M. Rajačić, I. Vukanac, “Winter Measurements of Radon Concentration at TCAS,” in Proc. 11 th Int. Conf. Physical Aspects of Environment (ICPAE 2023), Zrenjanin, Serbia, 2023, pp. 194 – 199.
    Retrieved from: http://www.nirs.qst.go.jp/rd/reports/proceedings/pdf/2nd_International_Symposium_2016.pdf
    Retrieved on: Apr. 12, 2024
  8. I. Borjanović, M. Rajačić, I. Vukanac, “Jesenja merenja nivoa radona na Visokoj tehničkoj školi strukovnih studija u Zrenjaninu,” DIT naučno-stručni časopis, br. 39, str. 53 – 57, Mar. 2023.
    (I. Bojanović, M. Rajačić, I. Vukanac, “Autumn Measurements of Radon Level at Technical College of Applied Sciences in Zrenjanin,” DIT Scientific and Professional Journal, no. 39, pp. 53 – 57, Mar. 2023)
    Retrieved from: http://www.diz.org.rs/images/casopis/dit39.pdf
    Retrieved on: Apr. 12, 2024
  9. How we make The Correntium Home Radon Detectors, Airthings, Oslo, Norway, 2022.
    Retrieved from: https://www.airthings.com/resources/radon-detector
    Retrieved on: Apr. 22, 2024
  10. Correntium Home Radon Detector User Manual, Airthings, Oslo, Norway, 2022.
    Retrieved from: https://cdn2.hubspot.net/hubfs/4406702/Website/Manuals/Home/1-043-Corentium-Home-manual-60x77.pdf
    Retrieved on: Apr. 22, 2024
  11. View Plus Radon Detector User Manual, Airthings, Oslo, Norway, 2022.
    Retrieved from: https://www.airthings.com/view-series-manul
    Retrieved on: Apr. 22, 2024
  12. FIDO Track, Niton, Milano, Italy, 2022.
    Retrieved from: https://www.niton.it/fidotrack/
    Retrieved on: Apr. 22, 2024
  13. Sources and effects of ionizing radiation,vol. 1, UNSCEAR Report (A/55/46), UNSCEAR, New York (NY), USA, 2000.
    Retrieved from: https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf
    Retrieved on: Apr. 22, 2024
  14. N. Todorović, S. Forkapić, J. Papuga, I. Bikit, J. Slivka, “Analiza uticaja faktora na koncentraciju aktivnosti radona u zatorenim prostorijama,” Prirodno-matematički fakultet - Departman za fiziku, Novi Sad, Srbija, 2009.
    (N. Todorović, S. Forkapić, J. Papuga, I. Bikit, J. Slivka, “Analysis of factors which influence radon concentration in closed spaces,” Faculty of Sciences – Physics Department, Novi Sad, Serbia, 2009.)
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/41/131/41131350.pdf
    Retrieved on: Apr. 22, 2024
  15. S. Forkapić et al., “Methods of Radon Measurement,” Facta universitatis - series Phys. Chem. Technol., vol. 4, no. 1, pp. 1 – 10, Jan. 2006.
    DOI: 10.2298/FUPCT0601001F
  16. G. K. Kanji, 100 Statistical Tests, 3rd ed., London, UK: Sage Publications, 2006.
  17. M. Živanović, “Optimizacija merenja koncentracije radona u zatvorenom prostoru metodom ugljenih filtera,” doktorska disertacija, Univerzitet u Beogradu, Fakultet za fizičku hemiju, Beograd, Srbija, 2016.
    (M. Živanović, “Optimisation of Indoor Radon Concentration Measurements by Means of Charcoal Canisters,” Ph.D. dissertation, Belgrade University, Faculty of Physical Chemistry, Belgrade, Serbia, 2016.)
    Retrieved from: http://lotos.ffh.bg.ac.rs/Aktuelno/Dokumenta/Doktorska%20teza%20-%20Milos%20Zivanovic.pdf
    Retrieved on: Apr. 22, 2024
  18. Vlada Republike Srbije. (Nov. 18, 2011., Jun. 29, 2018). Službeni Glasnik RS 86/11 i Službeni Glasnik RS 50/18. Pravilnik o granicama izlaganja jonizujućim zračenjima i merenjima radi procene nivoa izlaganja jonizujućim zračenjima.
    (Government of the Republic of Serbia. (Nov. 18, 2011, Jun. 29, 2018). Official Gazette RS 86/11 and Official Gazette RS 50/18. Rulebook on Limits of Exposure to Ionizing Radiation and Measurements for Assessment of the Exposure Level.)
    Retrieved from: https://www.srbatom.gov.rs/srbatomm/wp-content/uploads/2019/11/Pravilnik-o-granicama-izlaganja_50_2018.pdf
    Retrieved on: Apr. 23, 2024
  19. The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
    Retrieved from: https://eur-lex.europa.eu/eli/dir/2013/59/oj
    Retrieved on: Apr. 23, 2024