Vol. 9, 2024

Radiation Measurements

Thermoluminescence of beta-irradiated YBO3 :Nd3+ phosphor synthesized by combustion method: A preliminary study

Sibel Akça Özalp, Z. Gizem Portakal Uçar, Y. Ziya Halefoğlu, Mustafa Topaksu

Pages: 18-22

DOI: 10.37392/RapProc.2024.05

This study aims to investigate the thermoluminescence (TL) properties of the YBO3 sample doped with Nd3+, which is known to be an important candidate luminescence material. The Nd3+-doped YBO3 phosphor was synthesized at various concentrations (wt%) utilizing the combustion method. The optimal dopant concentration and optical filter combination for the Nd3+-doped YBO3 samples were determined through analysis of their TL glow curves. Consequently, TL emissions of the specified YBO3: Nd3+ (0.5%) samples were examined using the IRSL-TL 410 nm filter combination. The YBO3: Nd3+ (0.5%) sample displayed two distinct maxima at approximately 210oC and 390oC, with a linear heating rate of 2 oCs-1, and when the beta dose response of the sample was examined within the range of 0.1-20 Gy, a consistent linearity (b = 0.946, R2= 0.999) was observed between 0.1-5 Gy. Following 12 cycles of reusability testing, the integrated TL intensity exhibited no significant alterations. A short-term fading experiment of the TL emission of the sample was carried out, and the results showed that up to 7 days, the 1st maxima faded very little, the 2nd maxima almost did not fade at all, but around the 7th day, the intensity of this maxima increased greatly.
  1. C. Furetta, M. Prokic, R. Salamon, V. Prokic, G. Kitis, “Dosimetric characteristics of tissue equivalent thermoluminescent solid TL detectors based on lithium borate,” Nucl. Instrum. Methods Phys. Res. A, vol. 456, no. 3, pp. 411 – 417, Jan. 2001.
    DOI: 10.1016/S0168-9002(00)00585-4
  2. L.H. Jiang et al., “Thermoluminescence studies of LiSrBO3:RE3+(RE=Dy, Tb, Tm and Ce),” Appl. Radiat. Isot., vol. 68, no. 1, pp. 196 – 200, Jan. 2010.
    DOI: 10.1016/j.apradiso.2009.10.001
    PMid: 19884017
  3. B. Ramesh et al., “Determination of strain, site occupancy, photoluminescent, and thermoluminescent-trapping parameters of Sm3+-doped NaSrB5O 9 microstructures,” Ceram. Int., vol. 42, no. 1, pp. 1234 – 1245, Jan. 2016.
    DOI: 10.1016/j.ceramint.2015.09.055
  4. C. Wang, B. Yan, “Sol–gel synthesis and photoluminescence of RE3BO6: Eu3+/Tb3+(RE = Y, Gd) microcrystalline phosphors from hybrid precursors,” J. Non-Cryst. Solids, vol. 354, no. 10 – 11, pp. 962 – 969, Feb. 2008.
    DOI: 10.1016/j.jnoncrysol.2007.08.029
  5. X. Zhang et al., “Tunable photoluminescence and energy transfer of YBO3:Tb3+, Eu 3+ for white light emitting diodes,” J. Mater. Chem. C, vol. 1, no. 43, pp. 7202 – 7207, Nov. 2013.
    DOI: 10.1039/C3TC31200C
  6. R.G. Nair et al., “YBO 3 versus Y3BO 6 host on Tb 3+ luminescence,” J. Lumin., vol. 195, pp. 271 – 277, Mar. 2018.
    DOI: 10.1016/j.jlumin.2017.11.038
  7. L. J. Q. Maia, A. L. Moura, V. Jerez, C. B. de Araújo, “Structural properties and near infrared photoluminescence of Nd 3+ doped YBO 3 nanocrystals,” Opt. Mater., vol. 95, 109227, Sep. 2019.
    DOI: 10.1016/j.optmat.2019.109227
  8. R. Balakrishnaiah et al., “Enhanced luminescence properties of YBO3:Eu 3+ phosphors by Li-doping,” Mater. Res. Bull., vol. 46, no. 4, pp. 621 – 626, Apr. 2011.
    DOI: 10.1016/j.materresbull.2010.09.012
  9. V. Dubey, J. Kaur, S. Agrawal, N. S. Suryanarayana, K. V. R. Murthy, “Effect of Eu 3+ concentration on photoluminescence and thermoluminescence behavior of YBO3:Eu 3+ phosphor,” Superlattice Microst., vol. 67, pp. 156 – 171, Mar. 2014.
    DOI: 10.1016/j.spmi.2013.12.026
  10. V. Dubey, N. V. Dubey, S. J. Dhoble, H. C. Swart, “TL glow curve analysis and kinetics of UV, β and γ irradiated YBO3: Eu 3+ and Y2O3: Eu 3+ phosphors,” J. Mater. Sci: Mater. Electron., vol. 28, pp. 13565 – 13578, May 2017.
    DOI: 10.1007/s10854-017-7196-8
  11. S. Akça, “Thermoluminescence behavior of YBO 3 synthesized by combustion reaction versus beta radiation,” in Book of Abstr. 3rdInt. Conf. Materials Science, Mechanical and Automotive Engineerings and Technology (IMSMATEC`20), İstanbul, Turkey, 2020, pp. 377 – 377.
    Retrieved from: http://www.imsmatec.org/
    Retrieved on: Jun. 20, 2024
  12. S. Akça, “Kinetic Parameters of Thermoluminescence Dosimetric Peak of YBO 3 Phosphor,” Süleyman Demirel University Faculty of Arts and Sciences J. Sci., vol. 15, no. 1, pp. 100 – 109, May 2020.
    DOI: 10.29233/sdufeffd.705417
  13. S. Akça, Z. G. Portakal Uçar, Y. Z. Halefoğlu, M. Topaksu, “Variation of thermoluminescence behavior of doped (Nd 3+ and Eu3+) yttrium borate phosphor produced by a combustion process,” in Proc. 1st Int. Conf. Sensor, Detector, Materials Science and Technologies (SensDeTech), Bolu, Turkey, 2023, pp. 12 – 16.
    Retrieved from: https://senstech.ibu.edu.tr/Files/ckFiles/senstech-ibu-edu-tr/AbstractBook/SensDeTech-Proceedings.pdf
    Retrieved on: Jun. 20, 2024
  14. Y. Z. Halefoglu, “Luminescent properties and characterisation of LaB3O6:Eu 3+ phosphor synthesized using the combustion method,” Appl. Radiat. Isot., vol. 148, pp. 40 – 44, Jun. 2019.
    DOI: 10.1016/j.apradiso.2019.03.011
    PMid: 30921615
  15. S. Akca et al., “Thermoluminescence analysis of beta irradiated ZnB2O4: Pr 3+ phosphors synthesized by a wet-chemical method,” Radiat. Phys. Chem., vol. 160, pp. 105 – 111, Jul. 2019.
    DOI: 10.1016/j.radphyschem.2019.03.033
  16. V. Pagonis, G. Kitis, C. Furetta, “TL Dose Response Models”, in Numerical and Practical Exercises in Thermoluminescence, 1st ed., New York (NY), USA: Springer, 2006, ch. 4, p. 121.
    DOI: 10.1007/0-387-30090-2
  17. S. Del Sol Fernández et al., “Thermoluminescent characteristics of LiF:Mg, Cu, P and CaSO4:Dy for low dose measurement,” Appl. Radiat. Isot., vol. 111, pp. 50 – 55, May 2016.
    DOI: 10.1016/j.apradiso.2016.02.011
    PMid: 26922395
  18. Z. G. Portakal-Uçar et al., “A thermoluminescence study of Tb 3+ doped LaB3O6: dosimetric characteristics and kinetic parameters,” J. Lumin., vol. 253, 119493, Jan. 2023.
    DOI: 10.1016/j.jlumin.2022.119493
  19. M. Oglakci et al., “Thermoluminescence behavior of Ce 3+ doped lanthanum tri-borate phosphor for dosimetry applications,” Ceram. Int., vol. 49, no. 22, pp. 36092 – 36102, Nov. 2023.
    DOI: 10.1016/j.ceramint.2023.08.288
  20. G. Kitis, F. Hasan, S. Charalambous, “Regenerated thermoluminescence: some new data,” Nucl. Tracks Radiat. Meas., vol. 10, no. 4 – 6, pp. 565 – 570, 1985.
    DOI: 10.1016/0735-245X(85)90058-4