Vol. 9, 2024

Radiation Detectors

FABRICATION AND FIRST ELECTRICAL TESTS OF SILICON-BASED PIN PHOTODIODES FOR RADIATION APPLICATIONS

E. Yilmaz, E. Doganci, O. Yilmaz, U. Gurer, A. Kahraman, A. Mammadli, C. Abbasova, N. Suleymanova, S. Nuruyev, R. Akbarov, A. Mutale, E. Budak, A. Aktag, H. Karacali

Pages: 44-47

DOI: 10.37392/RapProc.2024.10

Silicon-based PIN photo diodes with 3 x 3 mm2 sensitive regions were successfully fabricated in this work. The electrical properties of PIN diodes were investigated intensively. The dark current of Silicon PIN photodiodes has been found to be 200nA at a reverse voltage of -70V. The PIN photo diodes have also been found to reach the full depletion mode and a capacitance value of 5.5 pF has been achieved at -40V. When the photo- sensitive region of the photo diode was illuminated with a help of 450 nm LED light. The photon current of 310 nA was obtained at a reverse voltage of -70V by using 450nm LED light. As the results of first evaluation, the experimental results also showed high dark current value and low photocurrent efficiency. The problems affecting the electrical performance of PIN diodes have been addressed in this research work. Additionally, all the results were carried out at room temperature.
  1. G. F. Dalla Betta, S. Ronchin, A. Zoboli, N. Zorzi, “High-performance PIN photodiodes on TMAH thinned silicon wafers,” Microelectron. J., vol. 39, no. 12, pp. 1485 – 1490, Dec. 2008.
    DOI: 10.1016/j.mejo.2008.04.009
  2. I. B. Chistokhin, K. B. Fritzler, “The Influence of the Conditions of Getter Formation in High-Resistivity Silicon on the Characteristics of PIN Photodiodes,” Tech. Phys. Lett., vol. 46, no. 11, pp. 1057 – 1059, Nov. 2020.
    DOI: 10.1134/S1063785020110048
  3. P. Buzhan et al., “An Advanced Study of Silicon Photomultiplier,” ICFA Ins. Bull., vol. 23, Fall Issue, pp. 28 – 41, 2001.
    Retrieved from: https://www.slac.stanford.edu/pubs/icfa/
    Retrieved on: Nov. 15, 2024
  4. M. Holik et al., “Miniaturized read-out interface ‘Spectrig MAPD’ dedicated for silicon photomultipliers,” Nucl. Inst. Meth. Phys. Res. A, vol. 978, 164440, Oct. 2020.
    DOI: 10.1016/j.nima.2020.164440
  5. Y. J. Feng et al., “Scalability of dark current in silicon PIN photodiode,” Chin. Phys. B, vol. 27, no. 4, 048501, Apr. 2018.
    DOI: 10.1088/1674-1056/27/4/048501
  6. E. Doǧanci et al., “Fabrication and characterization of Si-PIN photodiodes,” Turk. J. Phys., vol. 43, no. 6, pp. 556 – 562, 2021.
    DOI: 10.3906/fiz-1905-16
  7. S. C. Lee, H. B. Jeon, K. H. Kang, H. Park, “Study of silicon PIN diode responses to low energy gamma-rays,” J. Korean Phys. Soc., vol. 69, no. 10, pp. 1587 – 1590, Nov. 2016.
    DOI: 10.3938/jkps.69.1587
  8. K.-S. Park et al., “Estimates of the Photo-Response Characteristics of a Non-Fully-Depleted Silicon p-i-n Photodiode for the Near Infrared Spectral Range and the Experimental Results,” J. Korean Phys. Soc., vol. 50, no. 4, pp. 1156 – 1162, Apr. 2007.
    DOI: 10.3938/jkps.50.1156
  9. R. Kumar, S. D. Sharma, A. Philomina, A. Topkar, “Dosimetric characteristics of a PIN diode for radiotherapy application,” Technol. Cancer Res. Treat., vol. 13, no. 4, pp. 361 – 367, Aug. 2014.
    DOI: 10.7785/tcrt.2012.500388
    PMid: 24325130
  10. M. Kunst, O. Abdallah, F. W. Unsch, “Passivation of silicon by silicon nitride films,” Sol. Energy Mater. Sol. Cells, vol. 72, no. 1 – 4, pp. 335 – 341, Apr. 2002.
    DOI: 10.1016/S0927-0248(01)00181-7
  11. Z. Sadygov et al., “Model of single-electron performance of micro-pixel avalanche photo-diodes,” deposited at arXiv, Oct. 9, 2014.
    arXiv: 1410.2619
  12. A. Sadigov et al., “An Iterative Model of Performance of Micropixel Avalanche Photodiodes,” IJARPS, vol. 3, no. 2, pp. 9 – 19, Feb. 2016.
    Retrieved from: www.arcjournals.org
    Retrieved on: Nov. 15, 2024
  13. C. G. Kang et al., “Correlation between Guard Ring Geometry and Reverse Leakage Current of Si PIN Diode for Radiation Detector,” in Proc. Trans. Korean Nuc. Soc. Autumn Meeting, Gyeongju, Korea, 2017.
    Retrieved from: https://www.kns.org/files/pre_paper/38/17A-175%EA%B0%95%EC%B0%BD%EA%B5%AC.pdf
    Retrieved on: Nov. 15, 2024
  14. P. Jursinic, “PIN diodes for radiation therapy use: Their construction, characterization, and implementation,” Phys. Med., vol. 59, pp. 86 – 91, Mar. 2019.
    DOI: 10.1016/j.ejmp.2019.02.021
  15. M. Menichelli, L. Servoli, N. Wyrsch, “Status and perspectives of hydrogenated amorphous silicon detectors for MIP detection and beam flux measurements,” Front. Phys., vol. 10, Oct. 2022.
    DOI: 10.3389/fphy.2022.943306
  16. Z. Sadygov, A. Olshevski, I. Chirikov, I. Zheleznykh, A. Novikov, “Three advanced designs of micro-pixel avalanche photodiodes: Their present status, maximum possibilities, and limitations,” Nucl. Instrum. Methods Phys. Res. A, vol. 567, no. 1, pp. 70 – 73, Nov. 2006.
    DOI: 10.1016/j.nima.2006.05.215
  17. A. B. Rosenfeld, “Electronic dosimetry in radiation therapy,” Radiat. Meas., vol. 41, suppl. 1, pp. S134 – S153, Dec. 2006.
    DOI: 10.1016/j.radmeas.2007.01.005
  18. Y. Yamashita, H. Tadano, “Numerical modeling of reverse recovery characteristic in silicon pin diodes,” Solid State Electron., vol. 145, pp. 8 – 18, Jul. 2018.
    DOI: 10.1016/j.sse.2018.02.014
  19. A. B. Rosenfeld, “Advanced Semiconductor dosimetry in radiation therapy,” AIP Conf. Proc., vol. 1345, no. 1, pp. 48 – 74, May 2011.
    Retrieved from: https://ro.uow.edu.au/eispapers
    Retrieved on: Nov. 15, 2024
  20. R. A. Akbarov et al., “Scintillation readout with MAPD array for gamma spectrometer,” JINST, vol. 15, no. 1, C01001, Jan. 2020.
    DOI: 10.1088/1748-0221/15/01/C01001
  21. G. Ahmadov et al., “Gamma-ray spectroscopy with MAPD array in the readout of LaBr3 scintillator,” JINST, vol. 16, no. 7, P07020, Jul. 2021.
    DOI: 10.1088/1748-0221/16/07/P07020
  22. F. Ahmadov et al., “Investigation of parameters of new MAPD-3NM silicon photomultipliers,” JINST, vol. 17, no. 1, C01001, Jan. 2022.
    DOI: 10.1088/1748-0221/17/01/C01001
  23. M Holik et al., “Gamma ray detection performance of newly developed MAPD-3NM-II photosensor with LaBr3(Ce) crystal,” Sci. Rep., vol. 12, no. 1, 15855, Sep. 2022.
    DOI: 10.1038/s41598-022-20006-z
  24. A. Z. Sadigov et al., “Improvement of parameters of micro-pixel avalanche photodiodes,” J. Instrum., vol. 17, no. 7, P07021, Jul. 2022.
    DOI: 10.1088/1748-0221/17/07/P07021
  25. A. Sadigov et al., “Performance of styrene polymerized plastic scintillator with micropixel avalanche photodiode,” Radiat. Meas., vol. 171, 107061, Feb. 2024.
    DOI: 10.1016/j.radmeas.2024.107061
  26. S. Nuruyev et al., “Neutron/gamma scintillation detector for status monitoring of accelerator-driven neutron source IREN,” Nucl. Eng. Technol., vol. 56, no. 5, pp. 1667 – 1671, May 2024.
    DOI: 10.1016/j.net.2023.12.020
  27. A. N. Buynin, V. V. Osiko, Z. Z. Sadygov, V. G. Shangurov, “Microchannel avalanche photodetectors on Si/YSZ and Si/Si structures,” in Proc. 29th Workshop on Compound Semiconductor Devices and Integrated Circuits held in Europe (WOCSDICE), Cardiff, UK, 2005.
    Retrieved from: https://www.researchgate.net/publication/257873810
    Retrieved on: Nov. 15, 2024
  28. Z. Z. Sadygov et al., “A new low-noise avalanche photodiode with micro-pixel structure,” Physics, vol. X, no. 4, pp. 79 – 80, 2004.
    Retrieved from: https://www.researchgate.net/publication/237496809
    Retrieved on: Nov. 15, 2024
  29. M. Menichelli et al., “Fabrication of a hydrogenated amorphous silicon detector in 3-d geometry and preliminary test on planar prototypes,” Instruments, vol. 5, no. 4, 32, Dec. 2021.
    DOI: 10.3390/instruments5040032
  30. J. C. Gallagher et al., “Effect of GaN Substrate Properties on Vertical GaN PiN Diode Electrical Performance,” J. Electron. Mater., vol. 50, no. 6, pp. 3013 – 3021, Jun. 2021.
    DOI: 10.1007/s11664-021-08840-9