Vol. 9, 2024
Radiation Detectors
FABRICATION AND FIRST ELECTRICAL TESTS OF SILICON-BASED PIN PHOTODIODES FOR RADIATION APPLICATIONS
E. Yilmaz, E. Doganci, O. Yilmaz, U. Gurer, A. Kahraman, A. Mammadli, C. Abbasova, N. Suleymanova, S. Nuruyev, R. Akbarov, A. Mutale, E. Budak, A. Aktag, H. Karacali
Pages: 44-47
DOI: 10.37392/RapProc.2024.10
Abstract | References | Full Text (PDF)
Silicon-based PIN photo diodes with 3 x 3 mm2
sensitive regions were successfully fabricated in this work. The electrical
properties of PIN diodes were investigated intensively. The dark current of
Silicon PIN photodiodes has been found to be 200nA at a reverse voltage of
-70V. The PIN photo diodes have also been found to reach the full depletion
mode and a capacitance value of 5.5 pF has been achieved at -40V. When the
photo- sensitive region of the photo diode was illuminated with a help of
450 nm LED light. The photon current of 310 nA was obtained at a reverse
voltage of -70V by using 450nm LED light. As the results of first
evaluation, the experimental results also showed high dark current value
and low photocurrent efficiency. The problems affecting the electrical
performance of PIN diodes have been addressed in this research work.
Additionally, all the results were carried out at room temperature.
-
G. F. Dalla Betta, S. Ronchin, A. Zoboli, N. Zorzi,
“High-performance PIN photodiodes on TMAH thinned silicon wafers,”
Microelectron. J., vol. 39, no. 12,
pp. 1485 – 1490, Dec. 2008.
DOI: 10.1016/j.mejo.2008.04.009 -
I. B. Chistokhin, K. B. Fritzler, “The Influence of the Conditions of
Getter Formation in High-Resistivity Silicon on the Characteristics of PIN
Photodiodes,” Tech. Phys. Lett., vol. 46, no. 11, pp. 1057 – 1059,
Nov. 2020.
DOI: 10.1134/S1063785020110048 -
P. Buzhan et al., “An Advanced Study of Silicon Photomultiplier,”
ICFA Ins. Bull., vol. 23, Fall Issue,
pp. 28 – 41, 2001.
Retrieved from: https://www.slac.stanford.edu/pubs/icfa/
Retrieved on: Nov. 15, 2024 -
M. Holik et al., “Miniaturized read-out interface ‘Spectrig MAPD’ dedicated
for silicon photomultipliers,” Nucl. Inst. Meth. Phys. Res. A,
vol. 978, 164440, Oct. 2020.
DOI: 10.1016/j.nima.2020.164440 -
Y. J. Feng et al., “Scalability of dark current in silicon PIN photodiode,”
Chin. Phys. B, vol. 27, no. 4, 048501,
Apr. 2018.
DOI: 10.1088/1674-1056/27/4/048501 -
E. Doǧanci et al., “Fabrication and characterization of
Si-PIN photodiodes,” Turk. J. Phys., vol. 43, no. 6,
pp. 556 – 562, 2021.
DOI: 10.3906/fiz-1905-16 -
S. C. Lee, H. B. Jeon, K. H. Kang, H. Park, “Study of silicon PIN diode
responses to low energy gamma-rays,” J. Korean Phys. Soc., vol. 69,
no. 10, pp. 1587 – 1590, Nov. 2016.
DOI: 10.3938/jkps.69.1587 -
K.-S. Park et al., “Estimates of the Photo-Response Characteristics of a
Non-Fully-Depleted Silicon p-i-n Photodiode for the Near Infrared Spectral
Range and the Experimental Results,” J. Korean Phys. Soc., vol. 50,
no. 4, pp. 1156 – 1162, Apr. 2007.
DOI: 10.3938/jkps.50.1156 -
R. Kumar, S. D. Sharma, A. Philomina, A. Topkar, “Dosimetric
characteristics of a PIN diode for radiotherapy application,”
Technol. Cancer Res. Treat., vol. 13, no. 4, pp. 361 – 367, Aug. 2014.
DOI: 10.7785/tcrt.2012.500388
PMid: 24325130 -
M. Kunst, O. Abdallah, F. W. Unsch, “Passivation of silicon by silicon
nitride films,” Sol. Energy Mater. Sol. Cells, vol. 72, no. 1 – 4,
pp. 335 – 341, Apr. 2002.
DOI: 10.1016/S0927-0248(01)00181-7 -
Z. Sadygov et al., “Model of single-electron performance of micro-pixel
avalanche photo-diodes,” deposited at arXiv, Oct. 9, 2014.
arXiv: 1410.2619 -
A. Sadigov et al., “An Iterative Model of Performance of Micropixel
Avalanche Photodiodes,” IJARPS, vol. 3, no. 2, pp. 9 – 19, Feb.
2016.
Retrieved from: www.arcjournals.org
Retrieved on: Nov. 15, 2024 -
C. G. Kang et al., “Correlation between Guard Ring Geometry and Reverse
Leakage Current of Si PIN Diode for Radiation Detector,” in
Proc. Trans. Korean Nuc. Soc. Autumn Meeting, Gyeongju, Korea, 2017.
Retrieved from: https://www.kns.org/files/pre_paper/38/17A-175%EA%B0%95%EC%B0%BD%EA%B5%AC.pdf
Retrieved on: Nov. 15, 2024 -
P. Jursinic, “PIN diodes for radiation therapy use: Their construction,
characterization, and implementation,” Phys. Med., vol. 59, pp. 86
– 91, Mar. 2019.
DOI: 10.1016/j.ejmp.2019.02.021 -
M. Menichelli, L. Servoli, N. Wyrsch, “Status and perspectives of
hydrogenated amorphous silicon detectors for MIP detection and beam flux
measurements,” Front. Phys., vol. 10, Oct. 2022.
DOI: 10.3389/fphy.2022.943306 -
Z. Sadygov, A. Olshevski, I. Chirikov, I. Zheleznykh, A. Novikov, “Three
advanced designs of micro-pixel avalanche photodiodes: Their present
status, maximum possibilities, and limitations,”
Nucl. Instrum. Methods Phys. Res. A, vol. 567, no. 1, pp. 70 – 73, Nov. 2006.
DOI: 10.1016/j.nima.2006.05.215 -
A. B. Rosenfeld, “Electronic dosimetry in radiation therapy,”
Radiat. Meas., vol. 41, suppl. 1, pp. S134 – S153, Dec. 2006.
DOI: 10.1016/j.radmeas.2007.01.005 -
Y. Yamashita, H. Tadano, “Numerical modeling of reverse recovery
characteristic in silicon pin diodes,” Solid State Electron., vol.
145, pp. 8 – 18, Jul. 2018.
DOI: 10.1016/j.sse.2018.02.014 -
A. B. Rosenfeld, “Advanced Semiconductor dosimetry in radiation therapy,”
AIP Conf. Proc., vol. 1345, no. 1, pp. 48 – 74, May 2011.
Retrieved from: https://ro.uow.edu.au/eispapers
Retrieved on: Nov. 15, 2024 -
R. A. Akbarov et al., “Scintillation readout with MAPD array for gamma
spectrometer,” JINST, vol. 15, no. 1, C01001, Jan. 2020.
DOI: 10.1088/1748-0221/15/01/C01001 -
G. Ahmadov et al., “Gamma-ray spectroscopy with MAPD array in the readout
of LaBr3 scintillator,” JINST, vol. 16, no. 7, P07020, Jul. 2021.
DOI: 10.1088/1748-0221/16/07/P07020 -
F. Ahmadov et al., “Investigation of parameters of new MAPD-3NM silicon
photomultipliers,” JINST, vol. 17, no. 1, C01001, Jan. 2022.
DOI: 10.1088/1748-0221/17/01/C01001 -
M Holik et al., “Gamma ray detection performance of newly developed
MAPD-3NM-II photosensor with LaBr3(Ce) crystal,” Sci. Rep., vol. 12, no. 1,
15855, Sep. 2022.
DOI: 10.1038/s41598-022-20006-z -
A. Z. Sadigov et al., “Improvement of parameters of micro-pixel avalanche
photodiodes,” J. Instrum., vol. 17, no. 7, P07021, Jul. 2022.
DOI: 10.1088/1748-0221/17/07/P07021 -
A. Sadigov et al., “Performance of styrene polymerized plastic scintillator
with micropixel avalanche photodiode,” Radiat. Meas., vol. 171, 107061, Feb. 2024.
DOI: 10.1016/j.radmeas.2024.107061 -
S. Nuruyev et al., “Neutron/gamma scintillation detector for status
monitoring of accelerator-driven neutron source IREN,”
Nucl. Eng. Technol., vol. 56, no. 5, pp. 1667 – 1671, May 2024.
DOI: 10.1016/j.net.2023.12.020 -
A. N. Buynin, V. V. Osiko, Z. Z. Sadygov,
V. G. Shangurov, “Microchannel avalanche photodetectors on Si/YSZ and Si/Si
structures,” in
Proc. 29th Workshop on Compound Semiconductor Devices and Integrated
Circuits held in Europe (WOCSDICE), Cardiff, UK, 2005.
Retrieved from: https://www.researchgate.net/publication/257873810
Retrieved on: Nov. 15, 2024 -
Z. Z. Sadygov et al., “A new low-noise avalanche photodiode with
micro-pixel structure,” Physics, vol. X, no. 4, pp. 79 – 80, 2004.
Retrieved from: https://www.researchgate.net/publication/237496809
Retrieved on: Nov. 15, 2024 -
M. Menichelli et al., “Fabrication of a hydrogenated amorphous silicon
detector in 3-d geometry and preliminary test on planar prototypes,”
Instruments, vol. 5, no. 4, 32, Dec. 2021.
DOI: 10.3390/instruments5040032 -
J. C. Gallagher et al., “Effect of GaN Substrate Properties on Vertical GaN
PiN Diode Electrical Performance,” J. Electron. Mater., vol. 50,
no. 6, pp. 3013 – 3021, Jun. 2021.
DOI: 10.1007/s11664-021-08840-9