Vol. 9, 2024

Radiation Effects Analysis and Fault-Tolerant Design for Space Applications

MACHINE LEARNING MODELS FOR CLASSIFICATION OF SPACE RADIATION

Z. Stamenkovic, S. Vairachilai, M. Andjelkovic, S. P. Raja

Pages: 63-69

DOI: 10.37392/RapProc.2024.14

The primary aim of this study is to classify space radiation using existing models trained and analysed with a prepared dataset. Leveraging techniques such as Logistic Regression, Decision Tree, Random Forest, and Ensemble methods, the research aims to classify various types of space radiation, including gamma rays and hadrons. The goal is to build a classification prediction system capable of accurately distinguishing between different types of space radiation, facilitating the effective identification and analysis of radiation-induced effects in semiconductor devices. By discriminating between various types of radiation, this study aids in the detection and characterization of radiation-induced effects, crucial for evaluating the reliability and performance of semiconductor devices in space conditions. The outcomes of this research contribute to advancing the understanding of space radiation effects on semiconductor devices and assist in devising mitigation strategies to enhance their resilience in space missions. The study found that Random Forest and XGBoost were the top performers, achieving 99% accuracy in classifying space radiation, and Decision Tree also showed strong results at 98% accuracy.
  1. D. Gaggero, M. Valli, “Impact of cosmic-ray physics on dark matter indirect searches,” Adv. High Energy Phys., vol. 2018, spec. issue, pp. 1 – 23, Dec. 2018.
    DOI: 10.1155/2018/3010514
  2. T. Xiao et al., “A detector designed for diagnosing single event effect,” in Proc. Int. Conf. Radiation Effects of Electronic Devices (ICREED), Beijing, China, 2018, pp. 1 – 2.
    DOI: 10.1109/ICREED.2018.8905088
  3. P. I. Vaz, G. I. Wirth, F. F. Vidor, T. H. Both, “TID effects on I–V characteristics of bulk CMOS STD and ELT-based devices in 600 nm,” Microelectron. J., vol. 97, 104722, Mar. 2020.
    DOI: 10.1016/j.mejo.2020.104722
  4. B. Liang et al., “Total ionizing dose effect modelling method for CMOS digital-integrated circuit,” Nucl. Sci. Tech., vol. 35, 26, Feb. 2024.
    DOI: 10.1007/s41365-024-01378-5
  5. F. Faccio et al., “TID and displacement damage effects in vertical and lateral power MOSFETs for integrated DC-DC converters,” IEEE Trans. Nucl. Sci., vol. 57, no. 4, pp. 1790 – 1797, Aug. 2010.
    DOI: 10.1109/TNS.2010.2049584
  6. D. K. Nichols, “A review of dose rate dependent effects of total ionizing dose (TID) irradiations,” IEEE Trans. Nucl. Sci., vol. 27, no. 2, pp. 1016 – 1024, Apr. 1980.
    DOI: 10.1109/TNS.1980.4330968
  7. J. Jiang et al., “Total ionizing dose (TID) effects on finger transistors in a 65 nm CMOS process,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), Montreal (QC), Canada, 2016, pp. 5 – 8.
    DOI: 10.1109/ISCAS.2016.7527156
  8. M. Marcisovska et al., “A comparative study of the TID radiation effects on ASICs manufactured in 180 nm commercial technologies,” J. Instrum., vol. 13, no. 12, C12003, Dec. 2018.
    DOI: 10.1088/1748-0221/13/12/C12003
  9. F. Yuan et al., “Total ionizing dose (TID) effects of ray radiation on switching behaviours of Ag/AlOx/Pt RRAM device,” Nanoscale Res. Lett., vol. 9, 452, Aug. 2014.
    DOI: 10.1186/1556-276X-9-452
  10. S. Bala, R. Kumar, A. Kumar, “Total ionization dose (TID) effects on 2D MOS devices,” Trans. Electr. Electron. Mater., vol. 22, no. 6, pp. 1 – 9, Feb. 2021.
    DOI: 10.1007/s42341-020-00255-3
  11. L. E. Seixas et al., “Minimizing the TID effects due to gamma rays by using diamond layout for MOSFETs,” J. Mater. Sci.: Mater. Electron., vol. 30, pp. 4339 – 4351, Mar. 2019.
    DOI: 10.1007/s10854-019-00747-w
  12. F. Rinaldi et al., “Non-terrestrial networks in 5G and beyond: A survey,” IEEE Access, vol. 8, pp. 165178 – 165200, Sep. 2020.
    DOI: 10.1109/ACCESS.2020.3022981
  13. R. K. Bock et al., “Methods for multidimensional event classification: A case study using images from a Cherenkov gamma-ray telescope,” Nucl. Instrum. Methods Phys. Res. Sec. A, vol. 516, no. 2 – 3, pp. 511 – 528, Jan. 2004.
    DOI: 10.1016/j.nima.2003.08.157
  14. A. Pagliaro, G. Cusumano, A. La Barbera, V. La Parola, S. Lombardi, “Application of machine learning ensemble methods to ASTRI mini-array Cherenkov event reconstruction,” Appl. Sci., vol. 13, no. 14, 8172, Jul. 2023.
    DOI: 10.3390/app13148172
  15. S. Scuderi et al., “The ASTRI mini-array of Cherenkov telescopes at the Observatorio del Teide,” J. High Energy Astrophys.,vol. 35, pp. 52 – 68, Aug. 2022.
    DOI: 10.1016/j.jheap.2022.05.001
  16. F. Arneodo, A. Di Giovanni, P. Marpu, “A review of requirements for gamma radiation detection in space using CubeSats,” Appl. Sci., vol. 11, no. 6, 2659, Mar. 2021.
    DOI: 10.3390/app11062659
  17. M. Sharma, J. Nayak, M. K. Koul, S. Bose, A. Mitra, “Gamma/hadron segregation for a ground-based imaging atmospheric Cherenkov telescope using machine learning methods: Random forest leads,” Res. Astron. Astrophys., vol. 14, no. 11, pp. 1491 – 1503, Nov. 2014.
    DOI: 10.1088/1674-4527/14/11/012
  18. D. Horns, A. Jacholkowska, “Gamma rays as probes of the universe,” Comp. Rendus Phys., vol. 17, no. 6, pp. 632 – 648, Jun.-Jul. 2016.
    DOI: 10.1016/j.crhy.2016.04.006
  19. R. Bock, MAGIC Gamma Telescope, UCI Machine Learning Repository, Irvine (CA), USA, 2004.
    DOI: 10.24432/C52C8B.
  20. F. Pedregosa et al., “Scikit-learn: Machine Learning in Python”, J. Mach. Learn. Res., vol. 12, pp. 2825 – 2830, Oct. 2011.
    Retrieved from: https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
    Retrieved on: Mar. 12, 2024
  21. J. D. Hunter, “Matplotlib: A 2D Graphics Environment”, Comput. Sci. Eng., vol. 9, no. 3, pp. 90 – 95, May-Jun. 2007.
    DOI: 10.1109/MCSE.2007.55
  22. S. Van der Walt, S. C. Colbert, G. Varoquaux, “The NumPy Array: A Structure for Efficient Numerical Computation,” Comput. Sci. Eng., vol. 13, no. 2, pp. 22 – 30, Mar.-Apr. 2011.
    DOI: 10.1109/MCSE.2011.37
  23. X.-W. Chen, X. Lin, “Big data deep learning: Challenges and perspectives,” IEEE Access, vol. 2, pp. 514 – 525, May 2014.
    DOI: 10.1109/ACCESS.2014.2325029
  24. D.-E. Choe, H.-C. Kim, M.-H. Kim, “Sequence-based modelling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades,” Renew. Energy, vol. 174, pp. 218 – 235, Aug. 2021.
    DOI: 10.1016/j.renene.2021.04.025