Vol. 9, 2024

Radiobiology

POST–ACCIDENT BIOTA OF SERIOUS AND MAJOR RADIATION ACCIDENTS AND RADIOADAPTATION

N.M. Lyubashevsky, V.I. Starichenko

Pages: 114-120

DOI: 10.37392/RapProc.2024.22

The hypothesis of potentially lethal effects on biota during serious and major radiation accidents (SMA) is presented as a key event determining the characteristics of post-accident biota. At the same time, its actual observed state is the result of an evolutionarily fixed adequate reactivity to the risk of extinction. The programmed radioprotective–adaptive response includes epigenetic modifications and all levels of bioorganization, from molecular, intrapopulation (maternal effect, biosocial processes, etc.), to the formation of radiation ecosystems. The universality and effectiveness of this reactivity are the main indicator of overcoming biota extinction. Multiple anomalies imitating the effects of reduced radioresistance are also markers of damage. However, increased sensitivity to radiation in the natural environment is incompatible with the basic principles of biodiversity, which increases resistance to stress. Therefore, suppression of radioresistance cannot serve as an alternative to potentially lethal irradiation by SMA. Real SMA radiation loads are an order of magnitude lower than the doses characteristic of the observed damage to biota, ranked in laboratory and controlled conditions. It has been shown that the abnormally high radiotoxic load in SMA is provided by the synergy of damaging factors, both physical (acute/subacute + chronic irradiation) and biological (two– and multicomponent), to one degree or another associated with mutagenesis. In the early stages, for example, in rodents – hematological syndrome, then mainly reproductive damage, genetic drift, synergistically enhanced by a small population size. A constant level of increased mutagenesis against the background of a decrease in the absorbed dose may indicate a molecular-adaptive mechanism for blocking the synthesis products of damaged DNA (proteins, mRNA). Radioadaptation depends on isolation: animals living in families in an underground colony (mole vole Ellobius talpinus Pallas, 1770) are perfectly adapted, i.e. without anomalies, while the adaptation of mobile terrestrial rodents is imperfect. Radioadaptation is widely represented in the post–accident biota of the Chernobyl disaster under conditions of epigenetic transgenerational heredity. However, its implementation in the experiment has not been noted.
  1. J. Garnier-Laplace et al., “Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates,” J. Environ. Radioact., vol. 121, pp. 12 – 21, Jul. 2013.
    DOI: 10.1016/j.jenvrad.2012.01.013
    PMid: 22336569
  2. K. Beaugelin-Seiller, C. Della-Vedova, J. Garnier-Laplace, “Is non-human species radiosensitivity in the lab a good indicator of that in the field? Making the comparison more robust,” J. Environ. Radioact., vol. 211, 105870, Jan. 2020.
    DOI: 10.1016/j.jenvrad.2018.12.012
    PMid: 30578084
  3. F. Cortese et al., “Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization,” Oncotarget, vol. 9, no. 18, pp. 14692 – 14722, Feb. 2018.
    DOI: 10.18632/oncotarget.24461
    PMCid: PMC5865701
    PMid: 29581875
  4. S. Fesenko, “Review of radiation effects in non-human species in areas affected by the Kyshtym accident,” J. Radiol. Prot., vol. 39, no. 1, pp. R1 – R17, Mar. 2019.
    DOI: 10.1088/1361-6498/aafa92
    PMid: 30577037
  5. S. A. Geraskin, S. V. Fesenko, P. Yu. Volkova, N. N. Isamov, “What Have We Learned about the Biological Effects of Radiation from the 35 Years of Analysis of the Consequences of the Chernobyl NPP Accident?,” Biol. Bull. Russ. Acad. Sci., vol. 48, pp. 2105 – 2126, Dec. 2021.
    DOI: 10.1134/S1062359021120050
  6. G. J. Spatola et al., “The dogs of Chernobyl: Demographic insights into populations inhabiting the nuclear exclusion zone,” Sci. Adv., vol. 9, no. 9, pp. 1 – 16, Mar. 2023.
    DOI: 10.1126/sciadv.ade2537
    PMid: 36867701
    PMCid: PMC9984172
  7. Н. М. Любашевский и др., “Жизнеспособность популяций мелких млекопитающих в радиационной и экотоксичной среде, Проблемы отдаленных эколого-генетических последствий радиационных инцидентов: Тоцкий взрыв: Сборник тезисов конф., Россия, Екатеринбург, 2000, cтр. 54 – 66.
    (N. M. Lyubashevsky et al., “Viability of small mammal populations in a radiation and ecotoxic environment,” inBook of Abstr.Problems of long-term ecological and genetic consequences of radiation incidents: Totsky explosion, Russia, Ekaterinburg, 2000, pp. 54 – 66.)
  8. H. M. Любашевский, И. А. Пашнина, О. В. Тарасов, “Оценка здоровья среды в окрестностях города Озёрска (данные биоиндикации),” Сборник тезисов Региональной научно-практической конференции “ВУРС-45, Россия, Озерск, 2002, стр. 167 – 187.
    (N. M. Lyubashevsky, I. A. Pashnina, O. V. Tarasov, “Assessment of environmental health in the vicinity of the city of Ozersk (bioindication data),” in Proc. EURT-45: Regional Scientific and Practical Conference, Russia, Ozersk, 2002, pp. 167 – 187.)
  9. Environmental Protection – the Concept and Use of Reference Animals and Plants, vol 38, ICRP Publication 108, ICRP, Ottawa, Canada, 2008.
    Retrieved from: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20108
    Retrieved on: Dec. 20, 2023
  10. В. И. Стариченко, “Метаболизм остеотропных токсических веществ: наследственная детерминация,” Экологическая генетика, т. 8, нo. 3, стр. 27 – 37, Июнь, 2010.
    (V. I. Starichenko, “Metabolism of osteotropic toxical substances: hereditary determination,” Ecol. Genet., vol. 8, no. 3, pp. 27 – 37, Jun. 2010.)
    Retrieved from: https://journals.eco-vector.com/ecolgenet/article/view/5485/4268
    Retrieved on: Dec. 20, 2023
  11. V. I. Starichenko, “Hereditary component of variation in 90Sr deposition in inbred mice under exogenous conditions that affect bone formation,” Appl. Radiat. Isot., vol. 140, pp. 126 – 132, Oct. 2018.
    DOI: 10.1016/j.apradiso.2018.07.006
    PMid: 30015041
  12. В. И. Стариченко, Н. М. Любашевский, “Индивидуальные особенности аккумуляции Sr-90 в организме двух видов серых полевок, обитающих на территории Восточно-Уральского радиоактивного следа,” Радиац. биология. Радиоэкол., т. 38, нo. 3, стр. 375 – 383, 1998.
    (V. I. Starichenko, N. M. Lyubashevsky, “Individual characteristics of 90Sr accumulation in the body of two species of gray voles living in the territory of the East Ural radioactive trace,” Radiat. biology. Radioecol., vol. 38, no. 3, pp. 375 – 383, 1998.)
  13. М. В. Чибиряк, “Популяция домовой мыши в условиях техногенного загрязнения среды фтором,” Автореф. дисс. ... канд. биол. наук, Екатеринбург, 1996.
    (M. V. Chibiryak, “House mouse population under technogenic pollution of fluoride,Extended Abstract of ... Cand (Biol.) Dissertation, Ekaterinburg, 1996.)
  14. А. Г. Васильев, Отдаленные эколого-генетические последствия радиационных инцидентов: Тоцкий ядерный взрыв (Оренбургская область, 1954 г.), 2-е изд., Екатеринбург, Россия: Российская академия наук, 2000.
    G. Vasiliev, Long-term ecological and genetic consequences of radiation incidents: Totsky nuclear explosion (Orenburg region, 1954), 2nd ed., Ekaterinburg, Russia: Russian Academy of Sciences, 2000.)
  15. M. Lynch et al., “Genetic drift, selection and the evolution of the mutation rate,” Nat. Rev. Genet., vol. 17, no. 11 pp. 704 – 714, Oct. 2016.
    DOI: 10.1038/nrg.2016.104
    PMid: 27739533
  16. M. C. Chiu, K. Nukazawa, V. H. Resh, K. Watanabe, “Environmental effects, gene flow and genetic drift: Unequal influences on genetic structure across landscapes,” J. Biogeogr., vol. 50, no. 2, pp. 352 – 364, Feb. 2023.
    DOI: 10.1111/jbi.14537
  17. A. P. Møller, T. A. Mousseau, “Are Organisms adapting to ionizing radiation at Chernobyl?,” Trends in Ecol. Evol., vol. 31, no. 4, pp. 281 – 289, Apr. 2016.
    DOI: 10.1016/j.tree.2016.01.005
    PMid: 26868287
  18. T. A. Mousseau, “The Biology of Chernobyl,” Annu. Rev. Ecol. Evol. Syst., vol. 52, pp. 87 – 109, Nov. 2021.
    DOI: 10.1146/annurev-ecolsys-110218-024827
  19. A. Hiyama et al., “The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly,” Sci. Rep., vol. 2, 570, Aug. 2012.
    DOI: 10.1038/srep00570
    PMid: 22880161
    PMCid: PMC3414864
  20. Н. М. Любашевский и др., “Новые материалы по популяционно-генетической радиоадаптации мелких млекопитающих на ВУРСе,” Материалы междунар. науч. конф. Экологические проблемы горных территорий, Екатеринбург, Россия, 2002, стр. 244 – 249.
    (N. M. Lyubashevsky et al., “New data on population-genetic radioadaptation of small mammals on EURT,” in Proc. Int. Sci. Conf. Ecological problems of mountain territories, Yekaterinburg, Russia, 2002, pp. 244 – 249.)
  21. Н. М. Любашевский, В. И. Стариченко, “Адаптивная стратегия популяций грызунов при радиоактивном и химическом загрязнении среды,” Радиац. биол. Радиоэкол., т. 50, нo. 4, стр. 405 – 413, Июль-Aвг. 2010.
    (N. M. Lyubashevsky, V. I. Starichenko, “The adaptive strategy of rodent populations living in conditions of radioactive and chemical environmental pollution,” Radiat. Biol. Radioecol., vol. 50, no. 4, pp. 405 – 413, Jul.-Aug. 2010.)
    PMid: 20968052
  22. М. В. Чибиряк, Н. Г. Евдокимов, Н. В. Синева, “Особенности энергетического обмена обыкновенной слепушонки из головной части ВУРСа,Сб. материалов докл. VIII Всерос. популяц. семинара Популяции в пространстве и времени, Нижњи Новгород, Россия, 2005, стр. 463 – 465.
    (M. V. Chibiryak, N. G. Evdokimov, N. V. Sineva, “Features of energy metabolism of the northern mole vole from the head part of the EURT,” inBook of Abstr.VIII All-Russian. popul. seminar Populations in space and time, Nizhny Novgorod, Russia, 2005, pp. 463 – 465.)
  23. V. I. Starichenko, “Accumulation of 90Sr in the bone tissue of northern mole voles in the head portion of the East Ural Radioactive Trace,” Russ. J. Ecol., vol. 42, no. 1, pp. 64 – 70, Jan. 2011.
    DOI: 10.1134/S1067413611010115
  24. Н. Г. Евдокимов, “Структура поселений обыкновенной слепушонки (Ellobius talpinus (RODENTIA, CRICETIDAE),” Зоол. жур., т. 92, нo. 3, стр. 325 – 336, 2013.
    (N. G. Evdokimov, “Structure of the mole lemming (Ellobius talpinus, Rodentia, Cricetidae) colonies,” Zool. zhur., vol. 92, no. 3, pp. 325 – 336, 2013.)
    DOI: 10.7868/S0044513413030082
  25. V. I. Starichenko, N. M. Lyubashevskiy, M. V. Modorov, M. V. Chibiryak, “Skeletal 90Sr as a marker of migration activity of murine rodents in the zone of the Eastern Ural radioactive trace,” Russ. J. Ecol., vol. 45, no. 3, pp. 231 – 241, May 2014.
    DOI: 10.1134/S1067413614030126
  26. E. A. Shishkina, V. I. Starichenko, E. R. Valeeva, N. M. Lyubashevsky, M. V. Modorov, “Assessment of herb field mouse (Sylvaemus uralensis) migration in the area of the east urals radioactive trace using measurements of bone-seeking 90Sr,” J. Environ. Radioact., vol. 237, 106663, Oct. 2021.
    DOI: 10.1016/j.jenvrad.2021.106663
    PMid: 34120785
  27. Н. М. Любашевский, О. В. Тарасов, А. И. Смагин, “Толерантность к добавочной лучевой нагрузке как критерий специфической адаптации к радиационной среде,” Мат. конф. Адаптация биологических систем к естественным и экстремальным факторам среды, Челябинск, Россия, 2001, стр. 19 – 25.
    (N. M. Lyubashevsky, O. V. Tarasov, A. I. Smagin, “Tolerance to additional radiation exposure as a criterion for specific adaptation to the radiation environment,” inBook of Abstr.Conf. Adaptation of biological systems to natural and extreme environmental factors, Chelyabinsk, Russia, 2001, pp. 19 – 25.)
  28. В. Л. Шведов, А. В. Аклеев, Радиобиология стронция-90, Челябинск, Россия: УНПЦ РМ, 2001.
    (V. L. Shvedov, A. V. Akleev, Radiobiology of Strontium-90, Chelyabinsk, Russia: UNPTs RM, 2001.)
  29. I. A. Vasil’eva et al., “Phenogenetic analysis of pygmy wood mouse ( Apodemus uralensis Pall.) populations in the zone of the Eastern Ural radioactive trace (EURT),” Russ. J. Ecol., vol. 34, no. 6, pp. 405 – 412, Nov. 2003.
    DOI: 10.1023/A:1027364517929
  30. O. Kovalchuk et al., “Genome hypermethylation in Pinus silvestris of Chernobyl – a mechanism for radiation adaptation?,” Mutat. Res., vol. 529, no. 1 – 2, pp. 13 – 20, Aug. 2003.
    DOI: 10.1016/S0027-5107(03)00103-9
    PMid: 12943916
  31. А. Г. Васильев, Эпигенетические основы фенетики: на пути к популяционной мерономии, Екатеринбург, Россия: Академкнига, 2005.
    G. Vasil’ev, Epigenetic bases of phenetics: towards population meronomy, Ekaterinburg, Russia: Akademkniga, 2005.)
  32. А. Г. Васильев, И. А. Васильева, Гомологическая изменчивость морфологических структур и эпигенетическая дивергенция таксонов: Основы популяционной мерономии, Москва, Россия: Товарищество научных изданий КМК, 2009.
    G. Vasil’ev, I. V. Vasil’eva, Homological variability of morphological structures and epigenetic divergence among taxa: Principles of population meronomy, Moscow, Russia: Sci. Press LTD, 2009.)
    Retrieved from: https://zmmu.msu.ru/files/%D0%91%D0%B8%D0%B1%D0%BB%D0%B8%D0%BE%D1%82%D0%B5%D0%BA%D0%B0%20%D0%9F% D0%B0%D0%B2%D0%BB%D0%B8%D0%BD%D0%BE%D0%B2%D0%B0/vasilieva-2009_homolog_inzmench.pdf
    Retrieved on: Jan. 10, 2024
  33. A. I. Il’enko, T. P. Krapivko, Radioresistance of populations of bank voles Clethrionomys glareolus radionuclide-contaminated areas,” Dokl. Akad. Nauk., vol. 336, no. 1, pp. 714 – 718, 1994.
    Retrieved from: https://inis.iaea.org/search/translate.aspx?RN=26029153&recordsFor=GoogleTranslate
    Retrieved on: Jan. 10, 2024
  34. Т. П. Крапивко, “Экология природных популяций грызунов в зоне Восточно-Уральского радиоактивного следа,” Сборник тезисов Региональной научно-практической конференции “ВУРС-45, Озерск, Россия, 2002, стр. 137 – 166.
    (T. P. Krapivko, “Ecology of natural populations of rodents in the zone of the East Ural radioactive trace,” in Proc. EURT-45: Regional Scientific and Practical Conf., Ozersk, Russia, 2002, pp. 137 – 166.)
    Retrieved from: https://elib.biblioatom.ru/text/regionalnaya-konferentsiya-vurs-45_2002/p137/
    Retrieved on: Jan. 10, 2024
  35. E. B. Grigorkina, N. M. Lyubashevsky, “On the issue of radioresistance of rodents living in contaminated areas of the Urals,” inBook of Abstr.IV International. Symp. Atomic Urals, Industrial Urals, Ekaterinburg, Russia, 1996.
  36. J. Van Cann, E. Koskela, T. Mappes, A. Sims, P. C. Watts, “Intergenerational fitness effects of the early life environment in a wild rodent.” J. Anim. Ecol., vol. 88, no. 9, pp. 1355 – 1365, Sep. 2019.
    DOI: 10.1111/1365-2656.13039
    PMid: 31162628
  37. N. A. Orekhova, M. V. Modorov, “Effects of environmental low-dose irradiation on functional-metabolic organ responses in a natural mouse population (Apodemus agrarius Pallas, 1771) within the East Urals Radioactive Trace (EURT) area, Russia,” Int. J. Radiat. Biol., vol. 98, no. 9, pp. 1414 – 1423, 2022.
    DOI: 10.1080/09553002.2022.2033340
    PMid: 35073242
  38. Н. М. Любашевский, В. И. Стариченко, “Лактация и феномен биоразнообразия (эпигенетика минерального обмена у грызунов),” в мат-лы Mеждунар. науч. конф. Генетика популяций: прогресс и перспективы, Звенигород, Россия, 2017, стр. 152 – 154.
    (N. M. Lyubashevsky, V. I. Starichenko, “Lactation and the phenomenon of biodiversity (epigenetics of the mineral metabolism of rodents),” in Proc. Int. Conf. Genetics of Populations: Progress and Perspectives, Zvenigorod, Russia, 2017, pp. 152 – 154.)
    Retrieved from: https://pure.spbu.ru/ws/portalfiles/portal/9329149/Conf2017_PopGen_pro_eedings.pdf
    Retrieved on: Jan. 10, 2024
  39. Z. J. Ge, Q. Y. Sun, “Maternal epigenetic inheritance,” in Transgenerational Epigenetics, vol. 13, 2nd ed., Cambridge (MA), USA: Academic Press, 2019, ch. 5, pp. 75 – 105.
    DOI: 10.1016/B978-0-12-816363-4.00005-5
  40. B. M. Murdoch, G. K. Murdoch, S. Greenwood, S. McKay, “Nutritional Influence on Epigenetic Marks and Effect on Livestock Production,” Front. Genet., vol. 7, 182, Oct. 2016.
    DOI: 10.3389/fgene.2016.00182
    PMid: 27822224
    PMCid: PMC5075561