Vol. 4, 2019

Material Science

RECYCLING OF HAZELNUT SHELL: SYNTHESIS OF BORON CARBIDE BY CARBOTHERMIC REACTION

Erhan Budak, Serdar Hizarci, Ercan Yilmaz

Pages: 162–166

DOI: 10.37392/RapProc.2019.33

In the present study, boron carbide was prepared using boric acid and hazelnut shell activated carbon by a carbothermic reduction method at 1400 °C. Two different methods were applied to obtain activated carbon for this study; activated carbon production using hazelnut shells (I) and sulfuric acid treatment of hazelnut shells (II). The formation of boron carbide was proven by Fourier transformation infrared spectroscopy (FTIR) and X-ray diffraction(XRD), also the morphological examination was done by scanning electron microscopy (SEM). The average grain sizes were found as 30 and 7 nm for II and I, respectively. In addition, the calculated lattice parameters were closely matched with the reported values in the JCPDS card. It was found that hazelnut shells can be used as an alternative carbon source for boron carbide synthesis.
  1. F. Thévenot, “Boron carbide-A comprehensive review,” J. Eur. Ceram. Soc., vol. 6, no. 4, pp. 205 – 225, 1990.
    DOI: 10.1016/0955-2219(90)90048-K
  2. K. A. Schwetz, L. S. Sigl, L. Pfau, “Mechanical Properties of Injection Molded B4C-C Ceramics,” J. Solid State Chem., vol. 103, no. 1, pp. 68 – 76, Oct. 1997.
    DOI: 10.1006/jssc.1997.7316
  3. D. K. Bose, K. U. Nair, C. K. Gupta, “Production of High Purity Boron Carbide,” High Temp. Mater. Process., vol. 7, no. 2 – 3, pp. 133 – 140, 1986.
    DOI: 10.1515/HTMP.1986.7.2-3.133
  4. C. F. Bilsby, A. M. T. Bell, F. W. Morris, “Swelling of boron carbide under fast neutron irradiation,” in EMAG-MICRO 89, vol. 1, P. J. Goodhew, H. Y. Elder, Eds., Bristol, UK: Institute of Physics, 1990.
    Retrieved from: http://inis.iaea.org/search/search.aspx?orig_q=RN:23057613
    Retrieved on: Apr. 11, 2019
  5. A. Alizadeh, E. Taheri-Nassaj, N. Ehsani, “Synthesis of boron carbide powder by a carbothermic reduction method,” J. Eur. Ceram. Soc., vol. 24, no. 10 – 11, pp. 3227 – 3234, Sep. 2004.
    DOI: 10.1016/j.jeurceramsoc.2003.11.012
  6. Dj. Kosanović, Lj. Milovanović, S. Milovanović, A. Šaponjić, “Low-Temperature Synthetic Route for Boron Carbide Powder from Boric Acid-Citric Acid Gel Precursor,” Mater. Sci. Forum., vol. 555, pp. 255 – 260, Sep. 2007.
    DOI: 10.4028/www.scientific.net/msf.555.255
  7. A. Sinha, T. Mahata, B. P. Sharma, “Carbothermal route for preparation of boron carbide powder from boric acid-citric acid gel precursor,” J. Nucl. Mater., vol. 301, no. 2 – 3, pp. 165 – 169, Mar. 2002.
    DOI: 10.1016/S0022-3115(02)00704-3
  8. A. M. Hadian, J. A. Bigdeloo, “The effect of time, temperature and composition on boron carbide synthesis by sol-gel method,” J. Mater. Eng. Perform., vol. 17, no. 1, pp. 44 – 49, Feb. 2008.
    DOI: 10.1007/s11665-007-9125-0
  9. A. K. Khanra, “Production of boron carbide powder by carbothermal synthesis of gel material,” Bull. Mater. Sci., vol. 30, no. 2, pp. 93 – 96, Apr. 2007.
    DOI: 10.1007/s12034-007-0016-7
  10. T. R. Pilladi, K. Ananthansivan, S. Anthonysamy, “Synthesis of boron carbide from boric oxide-sucrose gel precursor,” Powder Technol., vol. 246, pp. 247 – 251, Sep. 2013.
    DOI: 10.1016/j.powtec.2013.04.055
  11. E. Çakır, C. Ergun, F. Ç. Şahin, İ. Erden, “In Situ Synthesis of B4C / TiB2 Composites from Low Cost Sugar Based Precursor,” Defect Diffus. Forum, vol. 297 – 301, pp. 52 – 56, Apr. 2010.
    DOI: 10.4028/www.scientific.net/DDF.297-301.52
  12. H. Konno, A. Sudoh, Y. Aoki, H. Habazaki, “Synthesis of C/B 4 C composites from sugar-boric acid mixed solutions,” Mol. Cryst. Liq. Cryst., vol. 386, no. 1, pp. 15 – 20, 2002.
    DOI: 10.1080/713738826
  13. M. G. Rodríguez, O. V. Kharissova, U. Ortiz-Méndez, “Formation of boron carbide nanofibers and nanobelts from heated by microwave,” Rev. Adv. Mater. Sci., vol. 7, no. 1, pp. 55 – 60, Jul. 2004.
    Retrieved from: http://www.ipme.nw.ru/e-journals/RAMS/no_1704/rodriguez/rodriguez.pdf
    Retrieved on: Jun. 18, 2019
  14. S. Mondal, A. K. Banthia, “Low-temperature synthetic route for boron carbide,” J. Eur. Ceram. Soc., vol. 25, no. 2 – 3, pp. 287 – 291, Dec. 2005.
    DOI: 10.1016/j.jeurceramsoc.2004.08.011
  15. M. Antadze et al., “Metal-ceramics based on nanostructured boron carbide,” Solid State Sci., vol. 14, no. 11 – 12, pp. 1725 – 1728, Nov. 2012.
    DOI: 10.1016/j.solidstatesciences.2012.08.004
  16. A. Demirbaş, “Relationships between lignin contents and fixed carbon contents of biomass samples,” Energy Convers. Manag., vol. 44, no. 9, pp. 1481 – 1486, Jun. 2003.
    DOI: 10.1016/S0196-8904(02)00168-1
  17. A. Aygün, S. Yenisoy-Karakaş, I. Duman, “Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties,” Microporous Mesoporous Mater., vol. 66, no. 2 – 3, pp. 189 – 195, Dec. 2003.
    DOI: 10.1016/j.micromeso.2003.08.028
  18. H. Uzun, E. G. Kaynak, E. Ibanoglu, S. Ibanoglu, “Chemical and structural variations in hazelnut and soybean oils after ozone treatments,” Grasas y Aceites, vol. 69, no. 2, Jun. 2018.
    DOI: 10.3989/gya.1098171
  19. S. Li, X. Chen, A. Liu, L. Wang, G. Yu, “Co-pyrolysis characteristic of biomass and bituminous coal,” Bioresour. Technol., vol. 179, pp. 414 – 420, Mar. 2015.
    DOI: 10.1016/j.biortech.2014.12.025
  20. A. O. Odeh, “Oualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks,” J. Fuel Chem. Technol., vol. 43, no. 2, pp. 129 – 137, Feb. 2015.
    DOI: 10.1016/s1872-5813(15)30001-3
  21. E. Aracri, C. D. Blanco, T. Tzanov, “An enzymatic approach to develop a lignin-based adhesive for wool floor coverings,” Green Chem., vol. 6, no. 5, Feb. 2014.
    DOI: 10.1039/c4gc00063c
  22. E. Pehlivan, “Production and Characterization of Activated Carbon From Pomegranate Pulp by Phosphoric Acid,” J. Turk. Chem. Soc. Sect. A: Chem., vol. 5, no. 2, pp. 1 – 8, 2018.
    DOI: 10.18596/jotcsa.370738
  23. J. Shu et al., “Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue,” RSC Adv., vol. 7, no. 24, pp. 14395 – 14405, Mar. 2017.
    DOI: 10.1039/c7ra00287d
  24. I. A. W. Tan, M. O. Abdullah, L. L. P. Lim, T. H. C. Yeo, “Surface Modification and Characterization of Coconut Shell-Based Activated Carbon Subjected to Acidic and Alkaline Treatments,” J. Appl. Sci. Process Eng., vol. 4, no. 2, pp. 186 – 194, 2017.
    DOI: 10.33736/jaspe.435.2017
  25. S. Wang, G. Q. Lu, “Effects of Oxide Promoters on Metal Dispersion and Metal-Support Interactions in Ni Catalysts Supported on Activated Carbon,” Ind. Eng. Chem. Res., vol. 36, no. 12, pp. 5103 – 5109, Dec. 1997.
    DOI: 10.1021/ie9703604
  26. Z. Xie, W. Guan, F. Ji, Z. Song, Y. Zhao, “Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology,” J. Chem., vol. 2014, Jun. 2014.
    DOI: 10.1155/2014/491912
  27. B. S. Girgis, Y. M. Temerk, M. M. Gadelrab, I. D. Abdullah, “X-ray Diffraction Patterns of Activated Carbons Prepared under Various Conditions,” Carbon Lett., vol. 8, no. 2, pp. 95 – 100, Jun. 2012.
    DOI: 10.5714/cl.2007.8.2.095
  28. T. K. Roy, C. Subramanian, A. K. Suri, “Pressureless sintering of boron carbide,” Ceram. Int., vol. 32, no. 3, pp. 227 – 233, Dec. 2006.
    DOI: 10.1016/j.ceramint.2005.02.008
  29. R. K. Dash, A. Nikitin, Y. Gogotsi, “Microporous carbon derived from boron carbide,” Microporous Mesoporous Mater., vol. 72, no. 1 – 3, pp. 203 – 208, Jul. 2004.
    DOI: 10.1016/j.micromeso.2004.05.001