Vol. 4, 2019
Material Science
RECYCLING OF HAZELNUT SHELL: SYNTHESIS OF BORON CARBIDE BY CARBOTHERMIC REACTION
Erhan Budak, Serdar Hizarci, Ercan Yilmaz
Pages: 162–166
DOI: 10.37392/RapProc.2019.33
Abstract | References | Full Text (PDF)
In the present study, boron carbide was prepared using boric acid and hazelnut shell activated carbon by a carbothermic reduction method at 1400 °C. Two different methods were applied to obtain activated carbon for this study; activated carbon production using hazelnut shells (I) and sulfuric acid treatment of hazelnut shells (II). The formation of boron carbide was proven by Fourier transformation infrared spectroscopy (FTIR) and X-ray diffraction(XRD), also the morphological examination was done by scanning electron microscopy (SEM). The average grain sizes were found as 30 and 7 nm for II and I, respectively. In addition, the calculated lattice parameters were closely matched with the reported values in the JCPDS card. It was found that hazelnut shells can be used as an alternative carbon source for boron carbide synthesis.
- F. Thévenot, “Boron carbide-A comprehensive review,” J. Eur. Ceram. Soc., vol. 6, no. 4, pp. 205 – 225, 1990.
DOI: 10.1016/0955-2219(90)90048-K - K. A. Schwetz, L. S. Sigl, L. Pfau, “Mechanical Properties of Injection Molded B4C-C Ceramics,” J. Solid State Chem., vol. 103, no. 1, pp. 68 – 76, Oct. 1997.
DOI: 10.1006/jssc.1997.7316 - D. K. Bose, K. U. Nair, C. K. Gupta, “Production of High Purity Boron Carbide,” High Temp. Mater. Process., vol. 7, no. 2 – 3, pp. 133 – 140, 1986.
DOI: 10.1515/HTMP.1986.7.2-3.133 - C. F. Bilsby, A. M. T. Bell, F. W. Morris, “Swelling of boron carbide under fast neutron irradiation,” in EMAG-MICRO 89, vol. 1, P. J. Goodhew, H. Y. Elder, Eds., Bristol, UK: Institute of Physics, 1990.
Retrieved from: http://inis.iaea.org/search/search.aspx?orig_q=RN:23057613
Retrieved on: Apr. 11, 2019 - A. Alizadeh, E. Taheri-Nassaj, N. Ehsani, “Synthesis of boron carbide powder by a carbothermic reduction method,” J. Eur. Ceram. Soc., vol. 24, no. 10 – 11, pp. 3227 – 3234, Sep. 2004.
DOI: 10.1016/j.jeurceramsoc.2003.11.012 - Dj. Kosanović, Lj. Milovanović, S. Milovanović, A. Šaponjić, “Low-Temperature Synthetic Route for Boron Carbide Powder from Boric Acid-Citric Acid Gel Precursor,” Mater. Sci. Forum., vol. 555, pp. 255 – 260, Sep. 2007.
DOI: 10.4028/www.scientific.net/msf.555.255 - A. Sinha, T. Mahata, B. P. Sharma, “Carbothermal route for preparation of boron carbide powder from boric acid-citric acid gel precursor,” J. Nucl. Mater., vol. 301, no. 2 – 3, pp. 165 – 169, Mar. 2002.
DOI: 10.1016/S0022-3115(02)00704-3 - A. M. Hadian, J. A. Bigdeloo, “The effect of time, temperature and composition on boron carbide synthesis by sol-gel method,” J. Mater. Eng. Perform., vol. 17, no. 1, pp. 44 – 49, Feb. 2008.
DOI: 10.1007/s11665-007-9125-0 - A. K. Khanra, “Production of boron carbide powder by carbothermal synthesis of gel material,” Bull. Mater. Sci., vol. 30, no. 2, pp. 93 – 96, Apr. 2007.
DOI: 10.1007/s12034-007-0016-7 - T. R. Pilladi, K. Ananthansivan, S. Anthonysamy, “Synthesis of boron carbide from boric oxide-sucrose gel precursor,” Powder Technol., vol. 246, pp. 247 – 251, Sep. 2013.
DOI: 10.1016/j.powtec.2013.04.055 - E. Çakır, C. Ergun, F. Ç. Şahin, İ. Erden, “In Situ Synthesis of B4C / TiB2 Composites from Low Cost Sugar Based Precursor,” Defect Diffus. Forum, vol. 297 – 301, pp. 52 – 56, Apr. 2010.
DOI: 10.4028/www.scientific.net/DDF.297-301.52 - H. Konno, A. Sudoh, Y. Aoki, H. Habazaki, “Synthesis of C/B 4 C composites from sugar-boric acid mixed solutions,” Mol. Cryst. Liq. Cryst., vol. 386, no. 1, pp. 15 – 20, 2002.
DOI: 10.1080/713738826 - M. G. Rodríguez, O. V. Kharissova, U. Ortiz-Méndez, “Formation of boron carbide nanofibers and nanobelts from heated by microwave,” Rev. Adv. Mater. Sci., vol. 7, no. 1, pp. 55 – 60, Jul. 2004.
Retrieved from: http://www.ipme.nw.ru/e-journals/RAMS/no_1704/rodriguez/rodriguez.pdf
Retrieved on: Jun. 18, 2019 - S. Mondal, A. K. Banthia, “Low-temperature synthetic route for boron carbide,” J. Eur. Ceram. Soc., vol. 25, no. 2 – 3, pp. 287 – 291, Dec. 2005.
DOI: 10.1016/j.jeurceramsoc.2004.08.011 - M. Antadze et al., “Metal-ceramics based on nanostructured boron carbide,” Solid State Sci., vol. 14, no. 11 – 12, pp. 1725 – 1728, Nov. 2012.
DOI: 10.1016/j.solidstatesciences.2012.08.004 - A. Demirbaş, “Relationships between lignin contents and fixed carbon contents of biomass samples,” Energy Convers. Manag., vol. 44, no. 9, pp. 1481 – 1486, Jun. 2003.
DOI: 10.1016/S0196-8904(02)00168-1 - A. Aygün, S. Yenisoy-Karakaş, I. Duman, “Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties,” Microporous Mesoporous Mater., vol. 66, no. 2 – 3, pp. 189 – 195, Dec. 2003.
DOI: 10.1016/j.micromeso.2003.08.028 - H. Uzun, E. G. Kaynak, E. Ibanoglu, S. Ibanoglu, “Chemical and structural variations in hazelnut and soybean oils after ozone treatments,” Grasas y Aceites, vol. 69, no. 2, Jun. 2018.
DOI: 10.3989/gya.1098171 - S. Li, X. Chen, A. Liu, L. Wang, G. Yu, “Co-pyrolysis characteristic of biomass and bituminous coal,” Bioresour. Technol., vol. 179, pp. 414 – 420, Mar. 2015.
DOI: 10.1016/j.biortech.2014.12.025 - A. O. Odeh, “Oualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks,” J. Fuel Chem. Technol., vol. 43, no. 2, pp. 129 – 137, Feb. 2015.
DOI: 10.1016/s1872-5813(15)30001-3 - E. Aracri, C. D. Blanco, T. Tzanov, “An enzymatic approach to develop a lignin-based adhesive for wool floor coverings,” Green Chem., vol. 6, no. 5, Feb. 2014.
DOI: 10.1039/c4gc00063c - E. Pehlivan, “Production and Characterization of Activated Carbon From Pomegranate Pulp by Phosphoric Acid,” J. Turk. Chem. Soc. Sect. A: Chem., vol. 5, no. 2, pp. 1 – 8, 2018.
DOI: 10.18596/jotcsa.370738 - J. Shu et al., “Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue,” RSC Adv., vol. 7, no. 24, pp. 14395 – 14405, Mar. 2017.
DOI: 10.1039/c7ra00287d - I. A. W. Tan, M. O. Abdullah, L. L. P. Lim, T. H. C. Yeo, “Surface Modification and Characterization of Coconut Shell-Based Activated Carbon Subjected to Acidic and Alkaline Treatments,” J. Appl. Sci. Process Eng., vol. 4, no. 2, pp. 186 – 194, 2017.
DOI: 10.33736/jaspe.435.2017 - S. Wang, G. Q. Lu, “Effects of Oxide Promoters on Metal Dispersion and Metal-Support Interactions in Ni Catalysts Supported on Activated Carbon,” Ind. Eng. Chem. Res., vol. 36, no. 12, pp. 5103 – 5109, Dec. 1997.
DOI: 10.1021/ie9703604 - Z. Xie, W. Guan, F. Ji, Z. Song, Y. Zhao, “Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology,” J. Chem., vol. 2014, Jun. 2014.
DOI: 10.1155/2014/491912 - B. S. Girgis, Y. M. Temerk, M. M. Gadelrab, I. D. Abdullah, “X-ray Diffraction Patterns of Activated Carbons Prepared under Various Conditions,” Carbon Lett., vol. 8, no. 2, pp. 95 – 100, Jun. 2012.
DOI: 10.5714/cl.2007.8.2.095 - T. K. Roy, C. Subramanian, A. K. Suri, “Pressureless sintering of boron carbide,” Ceram. Int., vol. 32, no. 3, pp. 227 – 233, Dec. 2006.
DOI: 10.1016/j.ceramint.2005.02.008 - R. K. Dash, A. Nikitin, Y. Gogotsi, “Microporous carbon derived from boron carbide,” Microporous Mesoporous Mater., vol. 72, no. 1 – 3, pp. 203 – 208, Jul. 2004.
DOI: 10.1016/j.micromeso.2004.05.001