Vol. 4, 2019

Radiology

PRELIMINARY RISK ASSESSMENT STUDY – NEUROBIOLOGICAL EFFECTS IN EXPERIMENTAL LONG-TIME EXPOSURE TO LOW GSM RADIATION

Soimita Suciu, Dana Dabala, Adrian Florea, Alexandra Sevastre-Berghian, Emanoil Surducan, Vasile Surducan, Camelia Neamtu

Pages: 195–201

DOI: 10.37392/RapProc.2019.40

Purpose: Due to the continuously rising number of mobile phone users of an increasingly younger age, our preliminary study aims to assess the possible neurobiological effects of chronic exposure to microwaves possessing frequencies and power levels similar to GSM signals. For this purpose, rats were irradiated in their daily habitat. Materials and Methods: Twenty male Wistar rats (3 months old) were exposed to GSM 860–890 MHz for 4 hours a day for 36 weeks. This group was compared with sham-exposed rats. The medium exposure value of the microwave field power density was ≈60 mW/m2 and medium whole body SAR ≈ 0.15 W/kg. Two types of behavioral tests (open field test and elevated pulse maze) and a transmission electron microscopy on brain samples were performed after 3 and 9 months of exposure, respectively. Results: Exposed rats exhibited decreased locomotor activity and increased emotionality as compared with sham-exposed animals. Transmission electron microscopy examination, performed after 3 and 9 months of exposure, showed neurodegenerative alterations in the hippocampus and the frontal cortex. Severity of the alterations seems to be related to the duration of exposure. Conclusions: These preliminary results suggest that long-term and low-dose cumulative microwave radiation could cause, in rats, ultrastructural changes in neurons, glia and stress behaviour. Further research is needed to investigate the interaction between mobile phone radiations and the central nervous system at the molecular level.
  1. H. Lai, A. Horita, A. W. Guy, “Microwave irradiation affects radial-arm maze performance in the rat,” Bioelectromagnetics, vol. 15, no. 2, pp. 95 - 104, 1994.
    DOI: 10.1002/bem.2250150202
    PMid: 8024608
  2. B. Wang, H. Lai, ”Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats,” Bioelectromagnetics, vol. 21, no. 1, pp. 52 - 56, Jan. 2000.
    DOI: 10.1002/(SICI)1521-186X(200001)21:1<52::AID-BEM8>3.0.CO;2-6
    PMid: 10615092
  3. B. L. Cobb, J. R. Jauchem, E. R. Adair, “Radial arm maze performance of rats following repeated low level microwave radiation exposure,” Bioelectromagnetics, vol. 25, no. 1, pp. 49 - 57, Jan. 2004.
    DOI: 10.1002/bem.10148
    PMid: 14696053
  4. Z. J. Sienkiewicz, R. P. Blackwell, R. G. Haylock, R. D. Saunders, B. L. Cobb, “Low-level exposure to pulsed 900 MHz microwave radiation does not cause deficits in the performance of a spatial learning task in mice,” Bioelectromagnetics, vol. 21, no. 3, pp. 151 – 158, Apr. 2000.
    DOI: 10.1002/(sici)1521-186x(200004)21:3<151::aid-bem1>3.0.co;2-q
    PMid: 10723014
  5. D. Dubreuil, T. Jay, J. M. Edeline, “Does head-only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks?,” Behav. Brain Res., vol. 129, no. 1 – 2, pp. 203 - 210, Feb. 2002.
    DOI: 10.1016/s0166-4328(01)00344-8
    PMid: 11809512
  6. H. Yamaguchi et al., “1439 MHz pulsed TDMA fields affect performance of rats in a T-maze task only when body temperature is elevated,” Bioelectromagnetics, vol. 24, no. 4, pp. 223 – 230, May 2003.
    DOI: 10.1002/bem.10099
    PMid: 12696082
  7. M. P. Ntzouni, A. Stamatakis, F. Stylianopoulou, L. H. Margaritis, “Short-term memory in mice is affected by mobile phone radiation,” Pathophysiology, vol. 18, no. 3, pp. 193 – 199, Jun. 2011.
    DOI: 10.1016/j.pathophys.2010.11.001
    PMid: 21112192
  8. J. C. Cassel, B. Cosquer, R. Galani, N. Kuster, “Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats,” Behav. Brain Res., vol. 155, no. 1, pp. 37 - 43, Nov. 2004.
    DOI: 10.1016/j.bbr.2004.03.031
    PMid: 15325777
  9. ICNIRP guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), ICNIRP, Oberschleissheim, Germany, 1988.
    Retrieved from: https://www.icnirp.org/cms/upload/publications/ICNIRPemfgdl.pdf
    Retrieved on: Jan 27, 2019
  10. ICNIRP Statement on the ”Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”, ICNIRP, Oberschleissheim, Germany, 2009.
    Retrieved from: https://www.icnirp.org/cms/upload/publications/ICNIRPStatementEMF.pdf
    Retrieved on: Aug. 1, 2019
  11. Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz–300 GHz), ICNIRP 16/2009, ICNIRP, Oberschleissheim, Germany, 2009.
    Retrieved from: http://ocpm.qc.ca/sites/ocpm.qc.ca/files/pdf/P52/5z.pdf
    Retrieved on: May 8, 2019
  12. M. T. Gamberini, D. S. Rodrigues, D. Rodrigues, V. B. Pontes, “Effects of the aqueous extract of Pimpinella anisum L. seeds on exploratory activity and emotional behavior in rats using the open field and elevated plus maze tests,” J. Ethnopharmacol., vol. 168, pp. 45 – 49, Jun. 2015.
    DOI: 10.1016/j.jep.2015.03.053
    PMid: 25839118
  13. A. A. Walf, C. A. Frye, “Antianxiety and antidepressive behavior produced by physiological estradiol regimen may be modulated by hypothalamic–pituitary–adrenal axis activity,” Neuropsychopharmacology, vol. 30, no. 7, pp. 1288 – 1301, Jul. 2005.
    DOI: 10.1038/sj.npp.1300708
    PMid: 15756306
  14. A. A. Walf, C. A. Frye, “The use of the elevated plus maze as an assay of anxiety-related behavior in rodents,” Nat. Protoc., vol. 2, no. 2, pp. 322 – 328, Mar. 2007.
    DOI: 10.1038/nprot.2007.44
    PMid: 17406592
    PMCid: PMC3623971
  15. M. A Hayat, Principles and Techniques of Electron Microscopy: Biological Applications, 4th ed., Cambridge, UK: Cambridge Univ. Press, 2000.
    Retrieved from: https://archive.org/stream/PrinciplesTechniquesOfElectronMicroscopyVolume2/Hayat-PrinciplesTechniquesOfElectronM icroscopyVol2_djvu.txt
    Retrieved on: Mar. 29, 2019
  16. W. Bloom, D. W. Fawcet, “The nervous tissue” in A textbook of Histology, 10th ed., Philadelphia (PA), USA: W. B. Saunders Co., 1975, ch. 12, pp. 333 – 363.
    Retrieved from: https://trove.nla.gov.au/work/11587217?q&sort=holdings+desc&_=1574538277129&versionId=45416250
    Retrieved on: Dec. 29, 2018
  17. I. M. Watt, The Principles and Practice of Electron Microscop, 2nd ed., Cambridge, UK: Cambridge Univ. Press, 1997.
    Retrieved from: https://www.scribd.com/document/337211592/The-Principles-and-Practice-of-Electron-Microscopy
    Retrieved on: Sep. 13, 2019
  18. A. İkinci et al., “The Effects of Prenatal Exposure to a 900 Megahertz Electromagnetic Field on Hippocampus Morphology and Learning Behavior in Rat Pups,” NeuroQuantology, vol. 11, no. 4, pp. 582 – 590, Dec. 2003.
    DOI: 10.14704/nq.2013.11.4.699
  19. H. S. Aboul Ezz, Y. A. Khadrawy, N. A. Ahmed, N. M. Radwan, N. M. El Bakry, “The effect of pulsed electromagnetic radiation from mobile phone on the levels of monoamine neurotransmitters in four different areas of rat brain,” Eur. Rev. Med. Pharmacol. Sci., vol. 17, no. 13, pp. 1782 - 1788, Jul. 2013.
    PMid: 23852905
  20. K. Maaroufi et al., “Spatial learning, monoamines and oxidative stress in rats exposed to 900 MHz electromagnetic field in combination with iron overload,” Behav. Brain Res., vol. 258, pp. 80 – 89, Jan. 2014.
    DOI: 10.1016/j.bbr.2013.10.016
    PMid: 24144546
  21. I. Pavacic, I. Trosic, “In vitro testing of cellular response to ultra high frequency electromagnetic field radiation,” Toxicol. In Vitro., vol. 22, no. 5, pp. 1344 - 1348, Aug. 2008.
    DOI: 10.1016/j.tiv.2008.04.014
    PMid: 18513921
  22. V. S. S. S. Sajja, N. Hlavac, P. J. VandeVord, “Role of Glia in Memory Deficits Following Traumatic Brain Injury: Biomarkers of Glia Dysfunction,” Front. Integr. Neurosci., vol. 10, article no. 7, Feb. 2016.
    DOI: 10.3389/fnint.2016.00007
    PMid: 26973475
    PMCid: PMC4770450
  23. L. G. Salford, A. E. Brun, J. L. Eberhardt, L. Malmgren, B. R. Persson, “Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones,” Environ. Health Perspect., vol. 111, no. 7, pp. 881 – 883, Jun. 2003.
    DOI: 10.1289/ehp.6039
    PMid: 12782486
    PMCid: PMC1241519
  24. J. Tang et al., “Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats,”Brain Res., vol. 1601, pp. 92 - 101, Mar. 2015.
    DOI: 10.1016/j.brainres.2015.01.019
    PMid: 25598203