Vol. 5, 2020

Cancer Research

BASIC RESEARCH OF LUNG CANCER IN-VITRO: MEASUREMENT METHODS, NEW POSSIBILITIES AND PERSPECTIVE

Jovana Todosijević, Jovan Luković, Jasmina Obradović, Vladimir Jurišić

Pages: 44-50

DOI: 10.37392/RapProc.2020.11

Epidemiological data indicate that in the last period there has been an increase in the number of malignancies and among them lung cancer is one of the most common forms. In vitro studies based on the usage of immortalized cell lines are an important source of scientific knowledge for understanding of the mechanism of cell growth, proliferation and cell death. In this paper, the most commonly used methods for in vitro research in NSCLC (non-small cell lung cancer) based on testing the effects of new compounds to determine the degree of apoptosis, necrosis, cell proliferation as well as their significance are discussed. So far, techniques of working with monolayer cultures have been mainly used. In the future, it is recommended to use a 3D system, knockout cell line and to conduct additional studies regarding the use of organoids or spheroids, as well as the application of new techniques to better understand the complex processes of carcinogenesis and the action of biologically active compounds.
  1. F. Bray et al., “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA Cancer J. Clin., vol. 68, no. 6, pp. 394 – 424, Nov. 2018.
    DOI: 10.3322/caac.21492
    PMid: 30207593
  2. J. R. Molina, P. Yang, S. D. Cassivi, S. E. Schild, A. A. Adjei, “Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship,” Mayo Clin. Proc., vol. 83, no. 5, pp. 584 – 594, May 2008.
    DOI: 10.4065/83.5.584
    PMid: 18452692
    PMCid: PMC2718421
  3. J. L. Mulshine et al., “From clinical specimens to human cancer preclinical models-a journey the NCI-cell line database-25 years later,” J. Cell. Biochem., vol. 121, no. 8 – 9, pp. 3986 – 3999, Dec. 2019.
    DOI: 10.1002/jcb.29564
    PMid: 31803961
    PMCid: PMC7496084
  4. R. Zdanowski, M. Krzyżowska, D. Ujazdowska, A. Lewicka, S. Lewicki, “Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways,” Cent. Eur. J. Immunol., vol. 40, no. 3, pp. 373 – 379, 2015.
    DOI: 10.5114/ceji.2015.54602
    PMid: 26648784
    PMCid: PMC4655390
  5. N. Somensi et al., “Extracellular HSP70 Activates ERK1/2, NF-kB and Pro-Inflammatory Gene Transcription Through Binding with RAGE in A549 Human Lung Cancer Cells,” Cell. Physiol. Biochem., vol. 42, no. 6, pp. 2507 – 2522, 2017.
    DOI: 10.1159/000480213
    PMid: 28848092
  6. E. Fokkema et al., “The role of apoptosis-related genes in non-small-cell lung cancer,” Clin. Lung Cancer, vol. 4, no. 3, pp. 174 – 182, Nov. 2002.
    DOI: 10.3816/CLC.2002.n.025
    PMid: 14706167
  7. S. Cuello-Nuñez et al., “A species-specific double isotope dilution strategy for the accurate quantification of platinum–GG adducts in lung cells exposed to carboplatin,” J. Anal. At. Spectrom., vol. 32, no. 7, pp. 1320 – 1330, Jun. 2017.
    DOI: 10.1039/C7JA00078B
  8. J. Li et al., “Berberine hydrochloride inhibits cell proliferation and promotes apoptosis of non-small cell lung cancer via the suppression of the MMP2 and Bcl-2/Bax signaling pathways,” Oncol. Lett., vol. 15, no. 5, pp. 7409 – 7414, May 2018.
    DOI: 10.3892/ol.2018.8249
    PMid: 29725453
    PMCid: PMC5920480
  9. B. Xie et al., “Epidermal growth factor receptor gene mutations in non-small-cell lung cancer cells are associated with increased radiosensitivity in vitro,” Cancer Manag. Res., vol. 10, pp. 3551 – 3560, Sep. 2018.
    DOI: 10.2147/CMAR.S165831
    PMid: 30271203
    PMCid: PMC6145635
  10. J. Obradović et al., “Frequencies of EGFR single nucleotide polymorphisms in non-small cell lung cancer patients and healthy individuals in the Republic of Serbia: a preliminary study,” Tumor Biology, vol. 37, no. 8, pp. 10479 – 10486, Aug. 2016.
    DOI: 10.1007/s13277-016-4930-4
    PMid: 26846215
  11. V. Jurišić, J. Obradović, S. Pavlović, N. Djordjević, “Epidermal Growth Factor Receptor Gene in Non-Small-Cell Lung Cancer: The Importance of Promoter Polymorphism Investigation,” Anal. Cell. Pathol. (Amst)., vol. 2018, article no. 6192187, Oct. 2018.
    DOI: 10.1155/2018/6192187
    PMid: 30406002
    PMCid: PMC6204164
  12. V. Jurišić et al., “EGFR Polymorphism and Survival of NSCLC Patients Treated with TKIs: A Systematic Review and Meta-Analysis,” J. Oncol., vol. 2020, spec. issue, article no. 1973241, Mar. 2020.
    DOI: 10.1155/2020/1973241
    PMid: 32256580
    PMCid: PMC7104312
  13. I. Chaib et al., “Co-activation of STAT3 and YES-Associated Protein 1 (YAP1) Pathway in EGFR-Mutant NSCLC,” J. Natl. Cancer Inst., vol. 109, no. 9, Sep. 2017.
    DOI: 10.1093/jnci/djx014
    PMid: 28376152
    PMCid: PMC5409000
  14. Z. Schrank et al., “Current Molecular-Targeted Therapies in NSCLC and Their Mechanism of Resistance,” Cancers, vol. 10, no. 7, article no. 224, Jul. 2018.
    DOI: 10.3390/cancers10070224
    PMid: 29973561
    PMCid: PMC6071023
  15. M. Yousef, I. A. Vlachogiannis, E. Tsiani, “Effects of Resveratrol against Lung Cancer: In Vitro and In Vivo Studies,” Nutrients, vol. 9, no. 11, article no. 1231, Nov. 2017.
    DOI: 10.3390/nu9111231
    PMid: 29125563
    PMCid: PMC5707703
  16. Z. Wang et al., “Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR,” Molecules, vol. 21, no. 10, article no. 1267, Sep. 2016.
    DOI: 10.3390/molecules21101267
    PMid: 27689974
    PMCid: PMC6274019
  17. Y. J. Xie et al., “Chelidonine selectively inhibits the growth of gefitinib-resistant non-small cell lung cancer cells through the EGFR-AMPK pathway,” Pharmacol. Res., vol. 159, article no. 104934, Sep. 2020.
    DOI: 10.1016/j.phrs.2020.104934
    PMid: 32464330
  18. X. Xu, Y. Zhang, D. Qu, T. Jiang, S. Li, “Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway,” J. Exp. Clin. Cancer Res., vol. 30, no. 1, article no. 33, Mar. 2011.
    DOI: 10.1186/1756-9966-30-33
    PMid: 21447176
    PMCid: PMC3073874
  19. L. Zhang et al., “Curcumin inhibits cell proliferation and migration in NSCLC through a synergistic effect on the TLR4/MyD88 and EGFR pathways,” Oncol. Rep., vol. 42, no. 5, pp. 1843 – 1855, Nov. 2019.
    DOI: 10.3892/or.2019.7278
    PMid: 31432177
    PMCid: PMC6775800
  20. O. Wattanathamsan, S. Treesuwan, B. Sritularak, V. Pongrakhananon, “Cypripedin, a phenanthrenequinone from Dendrobium densiflorum, sensitizes non-small cell lung cancer H460 cells to cisplatin-mediated apoptosis,” J. Nat. Med., vol. 72, no. 2, pp. 503 – 513, Mar. 2018.
    DOI: 10.1007/s11418-018-1176-z
    PMid: 29426985
  21. L. Liu et al., “PTEN inhibits non-small cell lung cancer cell growth by promoting G0/G1 arrest and cell apoptosis,” Oncol. Lett., vol. 17, no. 1, pp. 1333 – 1340, Jan. 2019.
    DOI: 10.3892/ol.2018.9719
    PMid: 30655903
    PMCid: PMC6313010
  22. M. Moro et al., “Metformin Enhances Cisplatin-Induced Apoptosis and Prevents Resistance to Cisplatin in Co-mutated KRAS/LKB1 NSCLC,” J. Thorac. Oncol., vol. 13, no. 11, pp. 1692 – 1704, Nov. 2018.
    DOI: 10.1016/j.jtho.2018.07.102
    PMid: 30149143
  23. M. Kumar et al., “Quinacrine inhibits GSTA1 activity and induces apoptosis through G1/S arrest and generation of ROS in human non-small cell lung cancer cell lines,” Oncotarget, vol. 11, no. 18, pp. 1603 – 1617, May 2020.
    DOI: 10.18632/oncotarget.27558
    PMid: 32405336
    PMCid: PMC7210017
  24. B. Li et al., “A novel drug repurposing approach for non-small cell lung cancer using deep learning,” PLoS One, vol. 15, no. 6, article no. e0233112, Jun. 2020.
    DOI: 10.1371/journal.pone.0233112
    PMid: 32525938
    PMCid: PMC7289363
  25. V. Parvathaneni, M. Goyal, N. S. Kulkarni, S. K. Shukla, V. Gupta, “Nanotechnology Based Repositioning of an Anti-Viral Drug for Non-Small Cell Lung Cancer (NSCLC),” Pharm. Res., vol. 37, no. 7, article no. 123, Jun. 2020.
    DOI: 10.1007/s11095-020-02848-2
    PMid: 32514688
  26. A. Kol et al., “ADCC responses and blocking of EGFR-mediated signaling and cell growth by combining the anti-EGFR antibodies imgatuzumab and cetuximab in NSCLC cells,” Oncotarget, vol. 8, no. 28, pp. 45432 – 45446, Jul. 2017.
    DOI: 10.18632/oncotarget.17139
    PMid: 28467975
    PMCid: PMC5542198
  27. F. Agustoni, et al., “EGFR-directed monoclonal antibodies in combination with chemotherapy for treatment of non-small-cell lung cancer: an updated review of clinical trials and new perspectives in biomarkers analysis,” Cancer Treat. Rev., vol. 72, pp. 15 – 27, Jan. 2019.
    DOI: 10.1016/j.ctrv.2018.08.002
    PMid: 30445271
  28. Z. Yang, K. Y. Tam, “Anti-cancer synergy of dichloroacetate and EGFR tyrosine kinase inhibitors in NSCLC cell lines,” Eur. J. Pharmacol., vol. 789, pp. 458 – 467, Oct. 2016.
    DOI: 10.1016/j.ejphar.2016.08.004
    PMid: 27514773
  29. J. Zhao, A. Guerrero, K. Kelnar, H. J. Peltier, A. G. Bader, “Synergy between next generation EGFR tyrosine kinase inhibitors and miR-34a in the inhibition of non-small cell lung cancer,” Lung Cancer, vol. 108, pp. 96 – 102, Jun. 2017.
    DOI: 10.1016/j.lungcan.2017.02.020
    PMid: 28625657
  30. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” J. Immunol. Methods, vol. 65, no. 1 – 2, pp. 55 – 63, Dec. 1983.
    DOI: 10.1016/0022-1759(83)90303-4
    PMid: 6606682
  31. A. van Tonder, A. M. Joubert, A. D. Cromarty, “Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays,” BMC Res. Notes, vol. 8, no. 1, article no. 47, Feb. 2015.
    DOI: 10.1186/s13104-015-1000-8
    PMid: 25884200
    PMCid: PMC4349615
  32. Y. L. Li et al., “Shikonin sensitizes wild‑type EGFR NSCLC cells to erlotinib and gefitinib therapy,” Mol. Med. Rep., vol. 18, no. 4, pp. 3882 – 3890, Oct. 2018.
    DOI: 10.3892/mmr.2018.9347
    PMid: 30106133
    PMCid: PMC6131653
  33. B. Toviwek, P. Suphakun, K. Choowongkomon, S. Hannongbua, M. P. Gleeson, “Synthesis and evaluation of the NSCLC anti-cancer activity and physical properties of 4-aryl-N-phenylpyrimidin-2-amines,” Bioorganic Med. Chem. Lett., vol. 27, no. 20, pp. 4749 – 4754, Oct. 2017.
    DOI: 10.1016/j.bmcl.2017.08.063
    PMid: 28927795
  34. R. Noro et al., “Gefitinib (IRESSA) sensitive lung cancer cell lines show phosphorylation of Akt without ligand stimulation,” BMC Cancer, vol. 6, no. 1, article no. 277, Dec. 2006.
    DOI: 10.1186/1471-2407-6-277
    PMid: 17150102
    PMCid: PMC1698934
  35. K. M. McKinnon, “Flow Cytometry: An Overview,” Curr. Protoc. Immunol., vol. 120, no. 1, pp. 5.1.1 – 5.1.11, Feb. 2018.
    DOI: 10.1002/cpim.40
    PMid: 29512141
    PMCid: PMC5939936
  36. V. Pillai, D. M. Dorfman, “Flow Cytometry of Nonhematopoietic Neoplasms,” Acta Cytol., vol. 60, no. 4, pp. 336 – 343, 2016.
    DOI: 10.1159/000448371
    PMid: 27578265
  37. M. Danova et al., “The role of automated cytometry in the new era of cancer immunotherapy,” Mol. Clin. Oncol., vol. 9, no. 4, pp. 355 – 361, Oct. 2018.
    DOI: 10.3892/mco.2018.1701
    PMid: 30233791
    PMCid: PMC6142305
  38. V. Jurišić, T. Srdić-Rajić, G. Konjević, G. Bogdanović, M. Čolić, “TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells,” J. Membr. Biol., vol. 239, no. 3, pp. 115 – 122, Feb. 2011.
    DOI: 10.1007/s00232-010-9309-7
    PMid: 21221555
  39. J. Wan, W. Wu, R. Zhang, S. Liu, Y. Huang, “Anti-EGFR antibody conjugated silica nanoparticles as probes for lung cancer detection,” Exp. Ther. Med., vol. 14, no. 4, pp. 3407 – 3412, Oct. 2017.
    DOI: 10.3892/etm.2017.4988
    PMid: 29042926
    PMCid: PMC5639344
  40. A. Vembadi, A. Menachery, M. A. Qasaimeh, “Cell Cytometry: Review and Perspective on Biotechnological Advances,” Front. Bioeng. Biotechnol., vol. 7, article no. 147, Jun. 2019.
    DOI: 10.3389/fbioe.2019.00147
    PMid: 31275933
    PMCid: PMC6591278
  41. T. Mahmood, P. C. Yang, “Western blot: technique, theory, and trouble shooting,” N. Am. J. Med. Sci., vol. 4, no. 9, pp. 429 – 434, Sep. 2012.
    DOI: 10.4103/1947-2714.100998
    PMid: 23050259
    PMCid: PMC3456489
  42. M. Forcella et al., “Non-small cell lung cancer (NSCLC), EGFR downstream pathway activation and TKI targeted therapies sensitivity: Effect of the plasma membrane-associated NEU3,” PLoS One, vol. 12, no. 10, article no. e0187289, Oct. 2017.
    DOI: 10.1371/journal.pone.0187289
    PMid: 29088281
    PMCid: PMC5663482
  43. J. Codony-Servat et al., “Cancer Stem Cell Biomarkers in EGFR-Mutation-Positive Non-Small-Cell Lung Cancer,” Clin. Lung Cancer, vol. 20, no. 3, pp. 167 – 177, May 2019.
    DOI: 10.1016/j.cllc.2019.02.005
    PMid: 30885551
  44. K. Konduri et al., “EGFR Fusions as Novel Therapeutic Targets in Lung Cancer,” Cancer Discov., vol. 6, no. 6, pp. 601 – 611, Jun. 2016.
    DOI: 10.1158/2159-8290.CD-16-0075
    PMid: 27102076
    PMCid: PMC4893907
  45. E. Sinkala et al., “Profiling protein expression in circulating tumour cells using microfluidic western blotting,” Nat. Commun., vol. 8, article no. 14622, Mar. 2017.
    DOI: 10.1038/ncomms14622
    PMid: 28332571
    PMCid: PMC5376644
  46. E. Banno et al., “Afatinib is especially effective against non-small cell lung cancer carrying an EGFR exon 19 deletion,” Anticancer Res., vol. 35, no. 4, pp. 2005 – 2008, Apr. 2015.
    PMid: 25862853
  47. R. Ghosh, J. E. Gilda, A. V. Gomes, “The necessity of and strategies for improving confidence in the accuracy of western blots,” Expert Rev. Proteomics, vol. 11, no. 5, pp. 549 – 560, Oct. 2014.
    DOI: 10.1586/14789450.2014.939635
    PMid: 25059473
    PMCid: PMC4791038
  48. M. Mishra, S. Tiwari, A. V. Gomes, “Protein purification and analysis: next generation Western blotting techniques,” Expert Rev. Proteomics, vol. 14, no. 11, pp. 1037 – 1053, Nov. 2017.
    DOI: 10.1080/14789450.2017.1388167
    PMid: 28974114
    PMCid: PMC6810642
  49. A. Leonetti et al., “Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer,” Br. J. Cancer, vol. 121, no. 9, pp. 725 – 737, Oct. 2019.
    DOI: 10.1038/s41416-019-0573-8
    PMid: 31564718
    PMCid: PMC6889286
  50. T. Koo et al., “Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression,” Nucleic Acids Res., vol. 45, no. 13, pp. 7897 - 7908, Jul. 2017.
    DOI: 10.1093/nar/gkx490
    PMid: 28575452
    PMCid: PMC5570104
  51. R. Alföldi et al., “Single Cell Mass Cytometry of Non-Small Cell Lung Cancer Cells Reveals Complexity of In vivo And Three-Dimensional Models over the Petri-dish,” Cells, vol. 8, no. 9, article no. 1093, Sep. 2019.
    DOI: 10.3390/cells8091093
    PMid: 31527554
    PMCid: PMC6770097
  52. W. Jia et al., “Effects of three-dimensional collagen scaffolds on the expression profiles and biological functions of glioma cells,” Int. J. Oncol., vol. 52, no. 6, pp. 1787 – 1800, Jun. 2018.
    DOI: 10.3892/ijo.2018.4330
    PMid: 29568859
    PMCid: PMC5919708
  53. Z. Zhu et al., “Bufalin induces lung cancer cell apoptosis via the inhibition of PI3K/Akt pathway,” Int. J. Mol. Sci., vol. 13, no. 2, pp. 2025 – 2035, 2012.
    DOI: 10.3390/ijms13022025
    PMid: 22408435
    PMCid: PMC3292004
  54. Y. Chen et al., “Sesamin suppresses NSCLC cell proliferation and induces apoptosis via Akt/p53 pathway,” Toxicol. Appl. Pharmacol., vol. 387, article no. 114848, Jan. 2020.
    DOI: 10.1016/j.taap.2019.114848
    PMid: 31809756
  55. D. Wang, B. Bao, “Gallic Acid Impedes Non-Small Cell Lung Cancer Progression via Suppression of EGFR-Dependent CARM1-PELP1 Complex,” Drug Des. Dev. Ther., vol. 14, pp. 1583 – 1592, Apr. 2020.
    DOI: 10.2147/DDDT.S228123
    PMid: 32425504
    PMCid: PMC7186892