Vol. 5, 2020
Cancer Research
BASIC RESEARCH OF LUNG CANCER IN-VITRO: MEASUREMENT METHODS, NEW POSSIBILITIES AND PERSPECTIVE
Jovana Todosijević, Jovan Luković, Jasmina Obradović, Vladimir Jurišić
Pages: 44-50
DOI: 10.37392/RapProc.2020.11
Abstract | References | Full Text (PDF)
Epidemiological data indicate that in the last period there has been an increase in the number of malignancies and among them lung cancer is one of the most common forms. In vitro studies based on the usage of immortalized cell lines are an important source of scientific knowledge for understanding of the mechanism of cell growth, proliferation and cell death. In this paper, the most commonly used methods for in vitro research in NSCLC (non-small cell lung cancer) based on testing the effects of new compounds to determine the degree of apoptosis, necrosis, cell proliferation as well as their significance are discussed. So far, techniques of working with monolayer cultures have been mainly used. In the future, it is recommended to use a 3D system, knockout cell line and to conduct additional studies regarding the use of organoids or spheroids, as well as the application of new techniques to better understand the complex processes of carcinogenesis and the action of biologically active compounds.
- F. Bray et al., “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA Cancer J. Clin., vol. 68, no. 6, pp. 394 – 424, Nov. 2018.
DOI: 10.3322/caac.21492
PMid: 30207593 - J. R. Molina, P. Yang, S. D. Cassivi, S. E. Schild, A. A. Adjei, “Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship,” Mayo Clin. Proc., vol. 83, no. 5, pp. 584 – 594, May 2008.
DOI: 10.4065/83.5.584
PMid: 18452692
PMCid: PMC2718421 - J. L. Mulshine et al., “From clinical specimens to human cancer preclinical models-a journey the NCI-cell line database-25 years later,” J. Cell. Biochem., vol. 121, no. 8 – 9, pp. 3986 – 3999, Dec. 2019.
DOI: 10.1002/jcb.29564
PMid: 31803961
PMCid: PMC7496084 - R. Zdanowski, M. Krzyżowska, D. Ujazdowska, A. Lewicka, S. Lewicki, “Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways,” Cent. Eur. J. Immunol., vol. 40, no. 3, pp. 373 – 379, 2015.
DOI: 10.5114/ceji.2015.54602
PMid: 26648784
PMCid: PMC4655390 - N. Somensi et al., “Extracellular HSP70 Activates ERK1/2, NF-kB and Pro-Inflammatory Gene Transcription Through Binding with RAGE in A549 Human Lung Cancer Cells,” Cell. Physiol. Biochem., vol. 42, no. 6, pp. 2507 – 2522, 2017.
DOI: 10.1159/000480213
PMid: 28848092 - E. Fokkema et al., “The role of apoptosis-related genes in non-small-cell lung cancer,” Clin. Lung Cancer, vol. 4, no. 3, pp. 174 – 182, Nov. 2002.
DOI: 10.3816/CLC.2002.n.025
PMid: 14706167 - S. Cuello-Nuñez et al., “A species-specific double isotope dilution strategy for the accurate quantification of platinum–GG adducts in lung cells exposed to carboplatin,” J. Anal. At. Spectrom., vol. 32, no. 7, pp. 1320 – 1330, Jun. 2017.
DOI: 10.1039/C7JA00078B - J. Li et al., “Berberine hydrochloride inhibits cell proliferation and promotes apoptosis of non-small cell lung cancer via the suppression of the MMP2 and Bcl-2/Bax signaling pathways,” Oncol. Lett., vol. 15, no. 5, pp. 7409 – 7414, May 2018.
DOI: 10.3892/ol.2018.8249
PMid: 29725453
PMCid: PMC5920480 - B. Xie et al., “Epidermal growth factor receptor gene mutations in non-small-cell lung cancer cells are associated with increased radiosensitivity in vitro,” Cancer Manag. Res., vol. 10, pp. 3551 – 3560, Sep. 2018.
DOI: 10.2147/CMAR.S165831
PMid: 30271203
PMCid: PMC6145635 - J. Obradović et al., “Frequencies of EGFR single nucleotide polymorphisms in non-small cell lung cancer patients and healthy individuals in the Republic of Serbia: a preliminary study,” Tumor Biology, vol. 37, no. 8, pp. 10479 – 10486, Aug. 2016.
DOI: 10.1007/s13277-016-4930-4
PMid: 26846215 - V. Jurišić, J. Obradović, S. Pavlović, N. Djordjević, “Epidermal Growth Factor Receptor Gene in Non-Small-Cell Lung Cancer: The Importance of Promoter Polymorphism Investigation,” Anal. Cell. Pathol. (Amst)., vol. 2018, article no. 6192187, Oct. 2018.
DOI: 10.1155/2018/6192187
PMid: 30406002
PMCid: PMC6204164 - V. Jurišić et al., “EGFR Polymorphism and Survival of NSCLC Patients Treated with TKIs: A Systematic Review and Meta-Analysis,” J. Oncol., vol. 2020, spec. issue, article no. 1973241, Mar. 2020.
DOI: 10.1155/2020/1973241
PMid: 32256580
PMCid: PMC7104312 - I. Chaib et al., “Co-activation of STAT3 and YES-Associated Protein 1 (YAP1) Pathway in EGFR-Mutant NSCLC,” J. Natl. Cancer Inst., vol. 109, no. 9, Sep. 2017.
DOI: 10.1093/jnci/djx014
PMid: 28376152
PMCid: PMC5409000 - Z. Schrank et al., “Current Molecular-Targeted Therapies in NSCLC and Their Mechanism of Resistance,” Cancers, vol. 10, no. 7, article no. 224, Jul. 2018.
DOI: 10.3390/cancers10070224
PMid: 29973561
PMCid: PMC6071023 - M. Yousef, I. A. Vlachogiannis, E. Tsiani, “Effects of Resveratrol against Lung Cancer: In Vitro and In Vivo Studies,” Nutrients, vol. 9, no. 11, article no. 1231, Nov. 2017.
DOI: 10.3390/nu9111231
PMid: 29125563
PMCid: PMC5707703 - Z. Wang et al., “Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR,” Molecules, vol. 21, no. 10, article no. 1267, Sep. 2016.
DOI: 10.3390/molecules21101267
PMid: 27689974
PMCid: PMC6274019 - Y. J. Xie et al., “Chelidonine selectively inhibits the growth of gefitinib-resistant non-small cell lung cancer cells through the EGFR-AMPK pathway,” Pharmacol. Res., vol. 159, article no. 104934, Sep. 2020.
DOI: 10.1016/j.phrs.2020.104934
PMid: 32464330 - X. Xu, Y. Zhang, D. Qu, T. Jiang, S. Li, “Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway,” J. Exp. Clin. Cancer Res., vol. 30, no. 1, article no. 33, Mar. 2011.
DOI: 10.1186/1756-9966-30-33
PMid: 21447176
PMCid: PMC3073874 - L. Zhang et al., “Curcumin inhibits cell proliferation and migration in NSCLC through a synergistic effect on the TLR4/MyD88 and EGFR pathways,” Oncol. Rep., vol. 42, no. 5, pp. 1843 – 1855, Nov. 2019.
DOI: 10.3892/or.2019.7278
PMid: 31432177
PMCid: PMC6775800 - O. Wattanathamsan, S. Treesuwan, B. Sritularak, V. Pongrakhananon, “Cypripedin, a phenanthrenequinone from Dendrobium densiflorum, sensitizes non-small cell lung cancer H460 cells to cisplatin-mediated apoptosis,” J. Nat. Med., vol. 72, no. 2, pp. 503 – 513, Mar. 2018.
DOI: 10.1007/s11418-018-1176-z
PMid: 29426985 - L. Liu et al., “PTEN inhibits non-small cell lung cancer cell growth by promoting G0/G1 arrest and cell apoptosis,” Oncol. Lett., vol. 17, no. 1, pp. 1333 – 1340, Jan. 2019.
DOI: 10.3892/ol.2018.9719
PMid: 30655903
PMCid: PMC6313010 - M. Moro et al., “Metformin Enhances Cisplatin-Induced Apoptosis and Prevents Resistance to Cisplatin in Co-mutated KRAS/LKB1 NSCLC,” J. Thorac. Oncol., vol. 13, no. 11, pp. 1692 – 1704, Nov. 2018.
DOI: 10.1016/j.jtho.2018.07.102
PMid: 30149143 - M. Kumar et al., “Quinacrine inhibits GSTA1 activity and induces apoptosis through G1/S arrest and generation of ROS in human non-small cell lung cancer cell lines,” Oncotarget, vol. 11, no. 18, pp. 1603 – 1617, May 2020.
DOI: 10.18632/oncotarget.27558
PMid: 32405336
PMCid: PMC7210017 - B. Li et al., “A novel drug repurposing approach for non-small cell lung cancer using deep learning,” PLoS One, vol. 15, no. 6, article no. e0233112, Jun. 2020.
DOI: 10.1371/journal.pone.0233112
PMid: 32525938
PMCid: PMC7289363 - V. Parvathaneni, M. Goyal, N. S. Kulkarni, S. K. Shukla, V. Gupta, “Nanotechnology Based Repositioning of an Anti-Viral Drug for Non-Small Cell Lung Cancer (NSCLC),” Pharm. Res., vol. 37, no. 7, article no. 123, Jun. 2020.
DOI: 10.1007/s11095-020-02848-2
PMid: 32514688 - A. Kol et al., “ADCC responses and blocking of EGFR-mediated signaling and cell growth by combining the anti-EGFR antibodies imgatuzumab and cetuximab in NSCLC cells,” Oncotarget, vol. 8, no. 28, pp. 45432 – 45446, Jul. 2017.
DOI: 10.18632/oncotarget.17139
PMid: 28467975
PMCid: PMC5542198 - F. Agustoni, et al., “EGFR-directed monoclonal antibodies in combination with chemotherapy for treatment of non-small-cell lung cancer: an updated review of clinical trials and new perspectives in biomarkers analysis,” Cancer Treat. Rev., vol. 72, pp. 15 – 27, Jan. 2019.
DOI: 10.1016/j.ctrv.2018.08.002
PMid: 30445271 - Z. Yang, K. Y. Tam, “Anti-cancer synergy of dichloroacetate and EGFR tyrosine kinase inhibitors in NSCLC cell lines,” Eur. J. Pharmacol., vol. 789, pp. 458 – 467, Oct. 2016.
DOI: 10.1016/j.ejphar.2016.08.004
PMid: 27514773 - J. Zhao, A. Guerrero, K. Kelnar, H. J. Peltier, A. G. Bader, “Synergy between next generation EGFR tyrosine kinase inhibitors and miR-34a in the inhibition of non-small cell lung cancer,” Lung Cancer, vol. 108, pp. 96 – 102, Jun. 2017.
DOI: 10.1016/j.lungcan.2017.02.020
PMid: 28625657 - T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” J. Immunol. Methods, vol. 65, no. 1 – 2, pp. 55 – 63, Dec. 1983.
DOI: 10.1016/0022-1759(83)90303-4
PMid: 6606682 - A. van Tonder, A. M. Joubert, A. D. Cromarty, “Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays,” BMC Res. Notes, vol. 8, no. 1, article no. 47, Feb. 2015.
DOI: 10.1186/s13104-015-1000-8
PMid: 25884200
PMCid: PMC4349615 - Y. L. Li et al., “Shikonin sensitizes wild‑type EGFR NSCLC cells to erlotinib and gefitinib therapy,” Mol. Med. Rep., vol. 18, no. 4, pp. 3882 – 3890, Oct. 2018.
DOI: 10.3892/mmr.2018.9347
PMid: 30106133
PMCid: PMC6131653 - B. Toviwek, P. Suphakun, K. Choowongkomon, S. Hannongbua, M. P. Gleeson, “Synthesis and evaluation of the NSCLC anti-cancer activity and physical properties of 4-aryl-N-phenylpyrimidin-2-amines,” Bioorganic Med. Chem. Lett., vol. 27, no. 20, pp. 4749 – 4754, Oct. 2017.
DOI: 10.1016/j.bmcl.2017.08.063
PMid: 28927795 - R. Noro et al., “Gefitinib (IRESSA) sensitive lung cancer cell lines show phosphorylation of Akt without ligand stimulation,” BMC Cancer, vol. 6, no. 1, article no. 277, Dec. 2006.
DOI: 10.1186/1471-2407-6-277
PMid: 17150102
PMCid: PMC1698934 - K. M. McKinnon, “Flow Cytometry: An Overview,” Curr. Protoc. Immunol., vol. 120, no. 1, pp. 5.1.1 – 5.1.11, Feb. 2018.
DOI: 10.1002/cpim.40
PMid: 29512141
PMCid: PMC5939936 - V. Pillai, D. M. Dorfman, “Flow Cytometry of Nonhematopoietic Neoplasms,” Acta Cytol., vol. 60, no. 4, pp. 336 – 343, 2016.
DOI: 10.1159/000448371
PMid: 27578265 - M. Danova et al., “The role of automated cytometry in the new era of cancer immunotherapy,” Mol. Clin. Oncol., vol. 9, no. 4, pp. 355 – 361, Oct. 2018.
DOI: 10.3892/mco.2018.1701
PMid: 30233791
PMCid: PMC6142305 - V. Jurišić, T. Srdić-Rajić, G. Konjević, G. Bogdanović, M. Čolić, “TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells,” J. Membr. Biol., vol. 239, no. 3, pp. 115 – 122, Feb. 2011.
DOI: 10.1007/s00232-010-9309-7
PMid: 21221555 - J. Wan, W. Wu, R. Zhang, S. Liu, Y. Huang, “Anti-EGFR antibody conjugated silica nanoparticles as probes for lung cancer detection,” Exp. Ther. Med., vol. 14, no. 4, pp. 3407 – 3412, Oct. 2017.
DOI: 10.3892/etm.2017.4988
PMid: 29042926
PMCid: PMC5639344 - A. Vembadi, A. Menachery, M. A. Qasaimeh, “Cell Cytometry: Review and Perspective on Biotechnological Advances,” Front. Bioeng. Biotechnol., vol. 7, article no. 147, Jun. 2019.
DOI: 10.3389/fbioe.2019.00147
PMid: 31275933
PMCid: PMC6591278 - T. Mahmood, P. C. Yang, “Western blot: technique, theory, and trouble shooting,” N. Am. J. Med. Sci., vol. 4, no. 9, pp. 429 – 434, Sep. 2012.
DOI: 10.4103/1947-2714.100998
PMid: 23050259
PMCid: PMC3456489 - M. Forcella et al., “Non-small cell lung cancer (NSCLC), EGFR downstream pathway activation and TKI targeted therapies sensitivity: Effect of the plasma membrane-associated NEU3,” PLoS One, vol. 12, no. 10, article no. e0187289, Oct. 2017.
DOI: 10.1371/journal.pone.0187289
PMid: 29088281
PMCid: PMC5663482 - J. Codony-Servat et al., “Cancer Stem Cell Biomarkers in EGFR-Mutation-Positive Non-Small-Cell Lung Cancer,” Clin. Lung Cancer, vol. 20, no. 3, pp. 167 – 177, May 2019.
DOI: 10.1016/j.cllc.2019.02.005
PMid: 30885551 - K. Konduri et al., “EGFR Fusions as Novel Therapeutic Targets in Lung Cancer,” Cancer Discov., vol. 6, no. 6, pp. 601 – 611, Jun. 2016.
DOI: 10.1158/2159-8290.CD-16-0075
PMid: 27102076
PMCid: PMC4893907 - E. Sinkala et al., “Profiling protein expression in circulating tumour cells using microfluidic western blotting,” Nat. Commun., vol. 8, article no. 14622, Mar. 2017.
DOI: 10.1038/ncomms14622
PMid: 28332571
PMCid: PMC5376644 - E. Banno et al., “Afatinib is especially effective against non-small cell lung cancer carrying an EGFR exon 19 deletion,” Anticancer Res., vol. 35, no. 4, pp. 2005 – 2008, Apr. 2015.
PMid: 25862853 - R. Ghosh, J. E. Gilda, A. V. Gomes, “The necessity of and strategies for improving confidence in the accuracy of western blots,” Expert Rev. Proteomics, vol. 11, no. 5, pp. 549 – 560, Oct. 2014.
DOI: 10.1586/14789450.2014.939635
PMid: 25059473
PMCid: PMC4791038 - M. Mishra, S. Tiwari, A. V. Gomes, “Protein purification and analysis: next generation Western blotting techniques,” Expert Rev. Proteomics, vol. 14, no. 11, pp. 1037 – 1053, Nov. 2017.
DOI: 10.1080/14789450.2017.1388167
PMid: 28974114
PMCid: PMC6810642 - A. Leonetti et al., “Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer,” Br. J. Cancer, vol. 121, no. 9, pp. 725 – 737, Oct. 2019.
DOI: 10.1038/s41416-019-0573-8
PMid: 31564718
PMCid: PMC6889286 - T. Koo et al., “Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression,” Nucleic Acids Res., vol. 45, no. 13, pp. 7897 - 7908, Jul. 2017.
DOI: 10.1093/nar/gkx490
PMid: 28575452
PMCid: PMC5570104 - R. Alföldi et al., “Single Cell Mass Cytometry of Non-Small Cell Lung Cancer Cells Reveals Complexity of In vivo And Three-Dimensional Models over the Petri-dish,” Cells, vol. 8, no. 9, article no. 1093, Sep. 2019.
DOI: 10.3390/cells8091093
PMid: 31527554
PMCid: PMC6770097 - W. Jia et al., “Effects of three-dimensional collagen scaffolds on the expression profiles and biological functions of glioma cells,” Int. J. Oncol., vol. 52, no. 6, pp. 1787 – 1800, Jun. 2018.
DOI: 10.3892/ijo.2018.4330
PMid: 29568859
PMCid: PMC5919708 - Z. Zhu et al., “Bufalin induces lung cancer cell apoptosis via the inhibition of PI3K/Akt pathway,” Int. J. Mol. Sci., vol. 13, no. 2, pp. 2025 – 2035, 2012.
DOI: 10.3390/ijms13022025
PMid: 22408435
PMCid: PMC3292004 - Y. Chen et al., “Sesamin suppresses NSCLC cell proliferation and induces apoptosis via Akt/p53 pathway,” Toxicol. Appl. Pharmacol., vol. 387, article no. 114848, Jan. 2020.
DOI: 10.1016/j.taap.2019.114848
PMid: 31809756 - D. Wang, B. Bao, “Gallic Acid Impedes Non-Small Cell Lung Cancer Progression via Suppression of EGFR-Dependent CARM1-PELP1 Complex,” Drug Des. Dev. Ther., vol. 14, pp. 1583 – 1592, Apr. 2020.
DOI: 10.2147/DDDT.S228123
PMid: 32425504
PMCid: PMC7186892