Vol. 5, 2020

Food Irradiation

DOSE ADJUSTMENT TO ENSURE UNIFORMITY OF CYLINDRICAL FOODSTUFF IRRADIATION

F. Studenikin, U. Bliznyuk, G. Krusanov, A. Chernyaev, V. Khankin, P. Borschegovskaya, V. Ipatova, A. Bliznyuk

Pages: 68-71

DOI: 10.37392/RapProc.2020.16

This study focuses on achieving a higher uniformity of 10 MeV electron treatment of cylindrical products by including aluminum modifiers of different thicknesses in the irradiation scheme. It was simulated the irradiation of cylindrical water phantom by beams of accelerated electrons with an energy of 10 MeV from two opposite sides using GEANT 4. During the simulation, aluminum plates-modifiers of different thicknesses of 1, 1.5 and 2 mm were added between the cylindrical phantom and the beam output in order to assess dose uniformity inside the phantom. It was found that the higher the thickness of aluminum plates, the more uniformity could be achieved. While 1 mm and 1.5 mm plates enable the efficiency ratio of 30 % and 45 %, respectively, a 2 mm modifier increases the uniformity of irradiation up to 60 %. In this way, computer modeling proves that inserting beam plates-modifiers between irradiated samples and beam output for irradiation from two opposite sides allows to considerably increase the uniformity of sample irradiation with complex geometry.
  1. A. P. Chernyaev, S. M. Varzar, A. V. Belousov, M. V. Zheltonozhskaya, E. N. Lykova, “Prospects of development of radiation technologies in Russia,”Phys. At. Nucl., vol. 82, no. 5, pp. 513 – 527, Sep. 2019.
    DOI: 10.1134/S1063778819040070
  2. А. С. Алимов, Практическое применение электронных ускорителей, но. 2011 – 13/877, НИИЯФ МГУ, Москва, Россия, 2011. (S. Alimov, The practical use of electronic accelerators, no. 2011 – 13/877, MSU SINP, Moscow, Russia, 2011.)
    Retrieved from: http://www.sinp.msu.ru/en/preprint/8278
    Retrieved on: Jan. 13, 2019
  3. Радиационные технологии. Наука. Народное хозяйство. Медицина , А. П. Черняев, Ред., Москва, Россия: Издательство Московского университета, 2019. ( Radiation technologies. The science. National economy. Medicine, A. P. Chernyaev, Eds., Moscow, Russia: Moscow University Press, 2019.)
    Retrieved from: http://hea.phys.msu.ru/static/data/Chernyaev_RadiactiveTech.pdf
    Retrieved on: May 10, 2019
  4. Statement summarising the Conclusions and Recommendations from the Opinions on the Safety of Irradiation of Food adopted by the BIOHAZ and CEF Panels , Statemen of EFSA, EFSA, Parma, Italy, 2011.
    Retrieved from: https://www.efsa.europa.eu/en/efsajournal/pub/2107
    Retrieved on: Mar. 29, 2011
  5. General Standard for Irradiated Foods , CXS 106-1983, FAO/WHO, Rome, Italy, 2003.
    Retrieved from: http://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/
    Retrieved on: Oct. 19, 2018
  6. U. A. Bliznyuk et al., “Innovative approaches to developing radiation technologies for processing biological objects,” Bull. Russ. Acad. Sci.: Phys., vol. 82, no. 6, Moscow, Russia, Jun. 2018.
    DOI: 10.3103/S1062873818060072
  7. Радиационные технологии в сельском хозяйстве и пищевой промышленности , Г. В. Козьмин, С. А. Гераськин, Н. И. Санжарова, Ред., Обнинск, Россия: ВНИИРАЭ, 2015. ( Radiation Technologies in Agriculture and Food Industry, G. V. Kozmin, S. A. Geraskin, N. I. Sanzharova, Eds., Obninsk, Russia: RIRAE, 2015.)
    Retrieved from: https://www.studmed.ru/kozmin-g-v-geraskin-s-a-sanzharova-n-i-red-radiacionnye-tehnologii-v-selskom-hozyaystve-i-pischevoy-promyshlennosti_c5d41bf704e.html
    Retrieved on: Oct. 10, 2019
  8. S. Y. Lee et al., “Combined Effect of Kimchi Powder and Onion Peel Extract on Quality Characteristics of Emulsion Sausages Prepared with Irradiated Pork,” Korean J. Food Sci. Anim. Resour., vol. 35, no. 3, pp. 277 – 285, Jun. 2015.
    DOI: 10.5851/kosfa.2015.35.3.277
    PMid: 26761840
    PMCid: PMC4662349
  9. S. Ayari, J. Han, K. D. Vu, M. Lacroix, “Effects of gamma radiation, individually and in combination with bioactive agents, on microbiological and physicochemical properties of ground beef,” Food Control, vol. 64, pp. 173 – 180, Jun. 2016.
    DOI: 10.1016/j.foodcont.2015.12.034
  10. S. Cheng et al., “The effects of electron beam application on the microbiological stability and physical–chemical quality of mince beef (M. longissimus Dorsi) during cold storage,” J. Food Process. Preserv ., vol. 42, no. 2, 2018.
    DOI: 10.1111/jfpp.13448
  11. C. Li et al., “Effect of different irradiation dose treatment on the lipid oxidation, instrumental color and volatiles of fresh pork and their changes during storage,” Meat Sci., vol. 128, pp. 68 – 76, Jun. 2017.
    DOI: 10.1016/j.meatsci.2017.02.009
    PMid: 28214694
  12. S. A. Bhoir, M. Jhaveri, S. P. Chawla, “Evaluation and predictive modeling of the effect of chitosan and gamma irradiation on quality of stored chilled chicken meat,” J. Food Process Eng., vol. 42, no. 6, Sep. 2019.
    DOI: 10.1111/jfpe.13254
  13. A. G. Barroso, N. L. Mastro, “Physicochemical characterization of irradiated arrowroot starch,” Radiat. Phys. Chem., vol. 158, pp. 194 – 198, May 2019.
    DOI: 10.1016/j.radphyschem.2019.02.020
  14. A. P. Chernyaev et al., “Study of the Effectiveness of Treating Trout with Electron Beam and X-Ray Radiation,” Bull. Russ. Acad. Sci.: Phys., vol. 84, no. 4, Moscow, Russia, Apr. 2020.
    DOI: 10.3103/S106287382004005X
  15. A. P. Chernyaev et al., “Modeling of electron irradiation treatment on kinetics of bacterial content in minced fish,” Memoirs of the Faculty of Physics, Lomonosov Moscow State University , no. 2, Moscow, Russia, 2020.
    Retrieved from: http://uzmu.phys.msu.ru/abstract/2020/2/2020401/
    Retrieved on: Sep. 19, 2020
  16. J. Kim, R. G. Moreira, M. E. Castell-Perez, “Validation of irradiation of broccoli with a 10 MeV electron beam accelerator,” J. Food Eng., vol. 86, no. 4, pp. 595 – 603, Jun. 2008.
    DOI: 10.1016/j.jfoodeng.2007.11.018
  17. H. Qin et al., “Concept development of X-ray mass thickness detection for irradiated items upon electron beam irradiation processing,” Radiat. Phys. Chem., vol. 143, pp. 8 – 13, Feb. 2018.
    DOI: 10.1016/j.radphyschem.2017.09.012
  18. J. Kim, R. G. Moreira, M. E. Castell-Perez, “Improving phytosanitary irradiation treatment of mangoes using Monte Carlo simulation,” J. Food Eng., vol. 149, pp. 137 – 143, Mar. 2015.
    DOI: 10.1016/j.jfoodeng.2014.10.005
  19. I. Peivaste, Gh. Alahyarizadeh, “Comparative Study on Absorbed Dose Distribution of Potato and Onion in X-ray and Electron Beam System by MCNPX2.6 Code,” MAPAN, vol. 34, no. 1, pp. 19 – 29, Mar. 2019.
    DOI: 10.1007/s12647-018-0287-z
  20. V. I. Shvedunov et al., “Electron accelerators design and construction at Lomonosov Moscow State University,” Radiat. Phys. Chem., vol. 159, pp. 95 – 100, Jun. 2019.
    DOI: 10.1016/j.radphyschem.2019.02.044
  21. J. Allison et al., “Recent developments in GEANT4,” Nucl. Instrum. Methods. Phys. Res. A, vol. 835, pp. 186 – 225, Nov. 2016.
    DOI: 10.1016/j.nima.2016.06.125
  22. U. A. Bliznyuk et al., “Computer simulation to determine food irradiation dose levels,” IOP Conf. Ser.: Earth Environ. Sci., vol. 365, article no. 012002, 2019.
    DOI: 10.1088/1755-1315/365/1/012002