Vol. 6, 2021
Radiochemistry
APPLICATION OF ADSORBENTS IN RADIONUCLIDE SEPARATION FOR RADIO-CHRONOMETRY PURPOSES
Mykola Strilchuk, Igor Maliuk, Ivan Mironyuk, Hanna Vasylyeva, Volodymyr Tryshyn, Maryna Hryhorenko, Oleksandr Zhukov, Khrystyna Savka
Pages: 6-10
DOI: 10.37392/RapProc.2021.02
Abstract | References | Full Text (PDF)
The aim of this work is the application of well-known adsorbents for the
separation of 90Sr, 90Y, and 90Zr
radionuclides. Three basic types of adsorbents have been studied: Dowex HCR
S/S cation exchange resin, Dowex 1x8 anion exchange resin, and titanium
dioxide with a chemically modified surface. The most effective adsorbent
for the separation of strontium, yttrium, and zirconium ions was titanium
dioxide with a chemically modified surface. This adsorbent selectively
absorbs zirconium cations against the background of excess strontium and
yttrium ions. The separation takes place in 2% HNO3 at initial
concentrations of the studied cations 10 ng/ml and 100 ng/ml. Analysis of
the initial mixture and the mixture after separation was conducted using
ICP-MS “Element-2” with argon plasma. Age of 90Sr-90Y
β- -source (approximately 30.2 years old) was measured using the
method of the chemical separation of 90Sr and 90Zr by
the titanium dioxide and following calculation of the 90Zr/90Sr ratio. The age of 90Sr-90Y β - -source was calculated as 31.9 ±1 year. The combination of
liquid scintillation counting of 90Sr and ICP-MS analysis was
proposed as an alternative method of determination of the 90Zr/ 90Sr ratio. It was shown, that both methods provide similar
results in radio chronometry of 90Sr-contained compound, i.e.
age-dating of liquid 90Sr-90Y β- -source,
and could validate each other.
-
K. Mayer, M. Wallenius, T. Fanghänel, “Nuclear forensic science — from
cradle to maturity,” J. Alloys Compd., vol. 444 – 445, pp. 50 –
56, Oct. 2007.
DOI: 10.1016/j.jallcom.2007.01.164 -
V. R. van Maris et al., “The behavior of parent and daughter nuclides in
aerosols released in radiological dispersion events: a study of a SrTiO3
source,” J. Raman Spectrosc., vol. 48 no. 4,
pp. 549 – 559, Apr. 2017.
DOI: 10.1002/jrs.5076 -
N. Kavasi, S. K. Sahoo, H. Arae, T. Aono, Z. Palacz, “Accurate and precise
determination of 90Sr at femtogram level in IAEA proficiency
test using Thermal Ionization Mass Spectrometry,” Sci. Rep., vol.
9, no. 1, 16532, Nov. 2019.
DOI: 10.1038/s41598-019-52890-3
PMid: 31712653
PMCid: PMC6848187 -
S. C. Wilschefski, M. R. Baxter, “Inductively Coupled Plasma Mass
Spectrometry: Introduction to Analytical Aspects,” Clin. Biochem. Rev., vol. 40, no. 3, pp. 115 – 133, Aug. 2019.
DOI: 10.33176/AACB-19-00024
PMid: 31530963
PMCid: PMC6719745 -
W. R. Hendee, E. R. Ritenour, Medical Imaging Physics, 4th ed.,
New York (NY), USA: J. Wiley and Sons, 2002, p. 353.
DOI: 10.1002/0471221155 - D. Mc Alister, “Options for Separation and Measurement of 89Sr/90Sr,” presented at the 63rd Conf. Radiobioassay and Radiochemical Measurements (RRMC), Portland (ME), USA, May 2018.
-
Principles and Applications of Liquid Scintillation Counting
, National Diagnostics, Atlanta (GA), USA, 2004.
Retrieved from: https://ehs.psu.edu/sites/ehs/files/lsc_theory_of_operation_part_1.pdf
Retrieved on: Jan. 10, 2021 -
P. Gaca, D. Reading, P. Warwick, “Application of multiple quench parameters
for confirmation of radionuclide identity in radioanalytical quality
control,” J. Radioanal. Nucl. Chem., vol. 322, no. 3, pp. 1383 –
1390, Dec. 2019.
DOI: 10.1007/s10967-019-06788-z -
H.Vasylyeva et al., “Adsorption of zirconium ions by X-type zeolite,” Biointerface Res. Appl. Chem., vol. 11, no. 5, pp. 13421 – 13431,
Feb. 2021.
DOI: 10.33263/BRIAC115.1342113431 -
H. V. Vasylyeva et al., “Radiochemical studies of state of lanthanum micro
amounts in water solution,” J. Mol. Liq., vol. 118, no. 1 – 3 pp.
41 – 44, Apr. 2005.
DOI: https://www.doi.org.10.1016/j.molliq.2004.07.008 -
S. Yang et al., “Crystal shape engineering of anatase TiO2
and its biomedical applications,” CrystEngComm, vol. 17, no. 35,
pp. 6617 – 6631, Sep. 2015.
DOI: https://www.doi.org.10.1039/C5CE00804B -
I.F. Mironyuk, I. M. Mykytyn, O. Ye. Kaglyan, D. I. Gudkov, H. V.
Vasylyeva, “90-Sr Adsorption From The Aquatic Environment Of Chornobyl
Exclusion Zone By Chemically Enhanced TiO2,” Nucl. Phys. At. Energy, vol. 21, no. 4, p. 347, 2020.
DOI: 10.15407/jnpae2020.04.347 -
H. Vasylyeva, I. Mironyuk, I. Mykytyn, K. Savka, “
Equilibrium studies of yttrium adsorption from aqueous solutions by
titanium dioxide,” Appl. Radiat. Isot., vol. 168, 109473, Feb.
2021.
DOI: 10.1016/j.apradiso.2020.109473
PMid: 33658128 -
H. Vasylyeva, I. Mironyuk, I. Mykytyn, “Аdsorption of Co 2+ and radioactive 60Со by mesoporous TiO2
,” Chem. Phys. Technol. Surf., vol. 10, no. 4, pp. 446 – 457, Dec.
2019.
DOI: 10.15407/hftp10.04.446 -
I. Mironyuk, I. Mykytyn, H. Vasylyeva, K. Savka, “Sodium-modified
mesoporous TiO2: Sol-gel synthesis, characterization and adsorption
activity toward heavy metal cations,” J. Mol. Liq., vol. 316,
113840, Oct. 2020.
DOI: 10.1016/j.molliq.2020.113840 -
H. Vasylyeva, I. Mironyuk, I. Mykytyn, N. Danyliuk, “Adsorption of Barium
and Zinc Ions by Mesoporous TiO2 with Chemosorbed Carbonate
Groups,” Phys. Chem. Solid State, vol. 20, no. 3, p. 282, Oct.
2019.
DOI: 10.15330/pcss.20.3.282-290 -
H. Vasylyeva et al., “Application of Titanium Dioxide for Zirconium Ions
Adsorption and Separation from a Multicomponent Mixture,”Phys. Chem. Solid State, vol. 22, no. 3, pp. 460 – 469, Aug. 2021.
DOI: 10.15330/pcss.22.3.460-469 -
M. M. S. Ali, E. A. Abdel-Galil, M. M. Hamed, “Removal of strontium
radionuclides from liquid scintillation waste and environmental water
samples,” Appl. Radiat. Isot., vol. 166, 109357, Dec. 2020.
DOI: 10.1016/j.apradiso.2020.109357
PMid: 32755756 -
A. Surrao et al., “Improving the separation of strontium and barium with Sr
Resin using chelating eluent solutions,” J. Radioanal. Nucl. Chem
., vol. 319, no. 3, pp. 1185 – 1192, Mar. 2019.
DOI: 10.1007/s10967-019-06432-w -
K. Kołacińska, Z. Samczyński, J. Dudek, A. Bojanowska-Czajka, M.
Trojanowicz, “A comparison study on the use of Dowex 1 and TEVA-resin in
determination of 99Tc in environmental and nuclear coolant
samples in a SIA system with ICP-MS detection,” Talanta, vol. 184,
pp. 527 – 536, Jul. 2018.
DOI: 10.1016/j.talanta.2018.03.034
PMid: 29674079 -
E. P. Horwitz, D. R. McAlister, A. H. Thakkar, “Synergistic enhancement of
the extraction of trivalent lanthanides and actinides by tetra-(n
-octyl) diglycolamide from chloride media,”Solvent Extr. Ion Exch., vol. 26, no. 1, pp. 12 – 24, 2008.
DOI: 10.1080/07366290701779423 - K. M. Mackay, R. A. Mackay, W. Henderson, Introduction to modern inorganic chemistry, 5th ed., London, UK: Blackie Academic & Professional an imprint of Chapman and Hall, 1996.
-
S. Agostinelli et al., “Geant4 — a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A vol. 506, no. 3, pp. 250 – 303,
Jul. 2003.
DOI: 10.1016/S0168-9002(03)01368-8