Vol. 6, 2021

Radiochemistry

APPLICATION OF ADSORBENTS IN RADIONUCLIDE SEPARATION FOR RADIO-CHRONOMETRY PURPOSES

Mykola Strilchuk, Igor Maliuk, Ivan Mironyuk, Hanna Vasylyeva, Volodymyr Tryshyn, Maryna Hryhorenko, Oleksandr Zhukov, Khrystyna Savka

Pages: 6-10

DOI: 10.37392/RapProc.2021.02

The aim of this work is the application of well-known adsorbents for the separation of 90Sr, 90Y, and 90Zr radionuclides. Three basic types of adsorbents have been studied: Dowex HCR S/S cation exchange resin, Dowex 1x8 anion exchange resin, and titanium dioxide with a chemically modified surface. The most effective adsorbent for the separation of strontium, yttrium, and zirconium ions was titanium dioxide with a chemically modified surface. This adsorbent selectively absorbs zirconium cations against the background of excess strontium and yttrium ions. The separation takes place in 2% HNO3 at initial concentrations of the studied cations 10 ng/ml and 100 ng/ml. Analysis of the initial mixture and the mixture after separation was conducted using ICP-MS “Element-2” with argon plasma. Age of 90Sr-90Y β- -source (approximately 30.2 years old) was measured using the method of the chemical separation of 90Sr and 90Zr by the titanium dioxide and following calculation of the 90Zr/90Sr ratio. The age of 90Sr-90Y β - -source was calculated as 31.9 ±1 year. The combination of liquid scintillation counting of 90Sr and ICP-MS analysis was proposed as an alternative method of determination of the 90Zr/ 90Sr ratio. It was shown, that both methods provide similar results in radio chronometry of 90Sr-contained compound, i.e. age-dating of liquid 90Sr-90Y β- -source, and could validate each other.
  1. K. Mayer, M. Wallenius, T. Fanghänel, “Nuclear forensic science — from cradle to maturity,” J. Alloys Compd., vol. 444 – 445, pp. 50 – 56, Oct. 2007.
    DOI: 10.1016/j.jallcom.2007.01.164
  2. V. R. van Maris et al., “The behavior of parent and daughter nuclides in aerosols released in radiological dispersion events: a study of a SrTiO3 source,” J. Raman Spectrosc., vol. 48 no. 4, pp. 549 – 559, Apr. 2017.
    DOI: 10.1002/jrs.5076
  3. N. Kavasi, S. K. Sahoo, H. Arae, T. Aono, Z. Palacz, “Accurate and precise determination of 90Sr at femtogram level in IAEA proficiency test using Thermal Ionization Mass Spectrometry,” Sci. Rep., vol. 9, no. 1, 16532, Nov. 2019.
    DOI: 10.1038/s41598-019-52890-3
    PMid: 31712653
    PMCid: PMC6848187
  4. S. C. Wilschefski, M. R. Baxter, “Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects,” Clin. Biochem. Rev., vol. 40, no. 3, pp. 115 – 133, Aug. 2019.
    DOI: 10.33176/AACB-19-00024
    PMid: 31530963
    PMCid: PMC6719745
  5. W. R. Hendee, E. R. Ritenour, Medical Imaging Physics, 4th ed., New York (NY), USA: J. Wiley and Sons, 2002, p. 353.
    DOI: 10.1002/0471221155
  6. D. Mc Alister, “Options for Separation and Measurement of 89Sr/90Sr,” presented at the 63rd Conf. Radiobioassay and Radiochemical Measurements (RRMC), Portland (ME), USA, May 2018.
  7. Principles and Applications of Liquid Scintillation Counting , National Diagnostics, Atlanta (GA), USA, 2004.
    Retrieved from: https://ehs.psu.edu/sites/ehs/files/lsc_theory_of_operation_part_1.pdf
    Retrieved on: Jan. 10, 2021
  8. P. Gaca, D. Reading, P. Warwick, “Application of multiple quench parameters for confirmation of radionuclide identity in radioanalytical quality control,” J. Radioanal. Nucl. Chem., vol. 322, no. 3, pp. 1383 – 1390, Dec. 2019.
    DOI: 10.1007/s10967-019-06788-z
  9. H.Vasylyeva et al., “Adsorption of zirconium ions by X-type zeolite,” Biointerface Res. Appl. Chem., vol. 11, no. 5, pp. 13421 – 13431, Feb. 2021.
    DOI: 10.33263/BRIAC115.1342113431
  10. H. V. Vasylyeva et al., “Radiochemical studies of state of lanthanum micro amounts in water solution,” J. Mol. Liq., vol. 118, no. 1 – 3 pp. 41 – 44, Apr. 2005.
    DOI: https://www.doi.org.10.1016/j.molliq.2004.07.008
  11. S. Yang et al.,Crystal shape engineering of anatase TiO2 and its biomedical applications,” CrystEngComm, vol. 17, no. 35, pp. 6617 – 6631, Sep. 2015.
    DOI: https://www.doi.org.10.1039/C5CE00804B
  12. I.F. Mironyuk, I. M. Mykytyn, O. Ye. Kaglyan, D. I. Gudkov, H. V. Vasylyeva, “90-Sr Adsorption From The Aquatic Environment Of Chornobyl Exclusion Zone By Chemically Enhanced TiO2,” Nucl. Phys. At. Energy, vol. 21, no. 4, p. 347, 2020.
    DOI: 10.15407/jnpae2020.04.347
  13. H. Vasylyeva, I. Mironyuk, I. Mykytyn, K. Savka, Equilibrium studies of yttrium adsorption from aqueous solutions by titanium dioxide,” Appl. Radiat. Isot., vol. 168, 109473, Feb. 2021.
    DOI: 10.1016/j.apradiso.2020.109473
    PMid: 33658128
  14. H. Vasylyeva, I. Mironyuk, I. Mykytyn,Аdsorption of Co 2+ and radioactive 60Со by mesoporous TiO2 ,” Chem. Phys. Technol. Surf., vol. 10, no. 4, pp. 446 – 457, Dec. 2019.
    DOI: 10.15407/hftp10.04.446
  15. I. Mironyuk, I. Mykytyn, H. Vasylyeva, K. Savka, “Sodium-modified mesoporous TiO2: Sol-gel synthesis, characterization and adsorption activity toward heavy metal cations,” J. Mol. Liq., vol. 316, 113840, Oct. 2020.
    DOI: 10.1016/j.molliq.2020.113840
  16. H. Vasylyeva, I. Mironyuk, I. Mykytyn, N. Danyliuk, “Adsorption of Barium and Zinc Ions by Mesoporous TiO2 with Chemosorbed Carbonate Groups,” Phys. Chem. Solid State, vol. 20, no. 3, p. 282, Oct. 2019.
    DOI: 10.15330/pcss.20.3.282-290
  17. H. Vasylyeva et al., “Application of Titanium Dioxide for Zirconium Ions Adsorption and Separation from a Multicomponent Mixture,”Phys. Chem. Solid State, vol. 22, no. 3, pp. 460 – 469, Aug. 2021.
    DOI: 10.15330/pcss.22.3.460-469
  18. M. M. S. Ali, E. A. Abdel-Galil, M. M. Hamed, “Removal of strontium radionuclides from liquid scintillation waste and environmental water samples,” Appl. Radiat. Isot., vol. 166, 109357, Dec. 2020.
    DOI: 10.1016/j.apradiso.2020.109357
    PMid: 32755756
  19. A. Surrao et al., “Improving the separation of strontium and barium with Sr Resin using chelating eluent solutions,” J. Radioanal. Nucl. Chem ., vol. 319, no. 3, pp. 1185 – 1192, Mar. 2019.
    DOI: 10.1007/s10967-019-06432-w
  20. K. Kołacińska, Z. Samczyński, J. Dudek, A. Bojanowska-Czajka, M. Trojanowicz, “A comparison study on the use of Dowex 1 and TEVA-resin in determination of 99Tc in environmental and nuclear coolant samples in a SIA system with ICP-MS detection,” Talanta, vol. 184, pp. 527 – 536, Jul. 2018.
    DOI: 10.1016/j.talanta.2018.03.034
    PMid: 29674079
  21. E. P. Horwitz, D. R. McAlister, A. H. Thakkar, “Synergistic enhancement of the extraction of trivalent lanthanides and actinides by tetra-(n -octyl) diglycolamide from chloride media,”Solvent Extr. Ion Exch., vol. 26, no. 1, pp. 12 – 24, 2008.
    DOI: 10.1080/07366290701779423
  22. K. M. Mackay, R. A. Mackay, W. Henderson, Introduction to modern inorganic chemistry, 5th ed., London, UK: Blackie Academic & Professional an imprint of Chapman and Hall, 1996.
  23. S. Agostinelli et al., “Geant4 — a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A vol. 506, no. 3, pp. 250 – 303, Jul. 2003.
    DOI: 10.1016/S0168-9002(03)01368-8