Vol. 6, 2021

Radiochemistry

MODIFICATION OF 18F-FLUORODESOXY-GLUCOSE (18F-FDG) RADIOPHARMACEUTICAL BY OXIME CONJUGATION

Gergana Simeonova, Boyan Todorov, Valentina Lyubomirova

Pages: 11-15

DOI: 10.37392/RapProc.2021.03

The isotope 18F is one of the attractive positron emitters with commercial cyclotron production by the following nuclear reaction18O (p, n) 18F. Basically, the radionuclide 18F is used for the production of 18F-labeled radiopharmaceuticals applied in positrone-emission tomography (PET). The most widely used among them is 18F-fluorodeoxy-glucose (18F-FDG). 18F-FDG as glucose analog can be used to assess the metabolism in the brain and heart, and also to study malignancies. It plays an important role in the planning of radiation therapy for pathologies such as lung cancer, head and neck cancer, colon cancer. 18F-fluorodeoxy-glucose has been used in recent years as a prosthetic group for indirect radiofluorination of biomolecules such as peptides and proteins under relatively mild reaction conditions, which allows the development and synthesis of more specific PET radio tracers. A method has been developed to directly modify 18F-FDG in the clinic environment and equipment. Simple and reliable procedure was done with formation of an oxime chemical bond with a bifunctional compound. The optimal reaction conditions were carried out by varying the buffer, temperature and catalyst used. The progress of the reaction is monitored by radio TLС - chromatography.
  1. M. R. Kilbourn, Fluorine-18 labeling of radiopharmaceuticals, Washington DC, USA: The National Academies Press, 1990.
    Retrieved from: https://www.nap.edu/catalog/20467/fluorine-18-labeling-of-radiopharmaceuticals
    Retrieved on: Jan. 30, 2021
  2. A. O. Valdivia, J. L. López, Y. M. Vargas-Rodríguez, O. C. González, “Producción de radiofármacos para tomografía por emisión de positrones (PET) y su aplicación en el diagnóstico de diversas enfermedades,” Educación Química, vol. 27. núm. 4, páginas 292 – 299, Oct. 2016. ( A. O. Valdivia, J. L. López, Y. M. Vargas-Rodríguez, O. C. González, “Production of radiopharmaceuticals for positron emission tomography (PET) and their application in the diagnosis of various diseases,” Chem. Education, vol. 27, no. 4, pp. 292 – 299, Oct. 2016.)
    Retrieved from: https://www.elsevier.es/es-revista-educacion-quimica-78-articulo-produccion-radiofarmacos-tomografia-por-emision-S0187893X16300076
    Retrieved on: Jan. 30, 2021
  3. Y. Chain, L. Illanes, Radiofármacos en medicina nuclear: fundamentos y aplicación clínica , La Plata, Argentina: EDULP, 2015. (Y. Chain, L. Illanes, Radiopharmaceuticals in nuclear medicine: fundamentals and clinical application , La Plata, Argentina: EDULP, 2015.)
    Retrieved from: http://sedici.unlp.edu.ar/bitstream/handle/10915/46740/Documento_completo.pdf?sequence=1
    Retrieved on: Aug. 13, 2021
  4. D. L. De Guevara, “Utilidad clínica oncológica y no oncológica del PET/CT,” Rev. Med. Clin. Condes, vol. 24, núm. 1, páginas 78 – 87, Enero 2013. (D. L. De Guevara, “Clinical utility of oncological and no oncological PET/CT,” Rev. Med. Clin. Condes, vol. 24, no. 1, pp. 78 – 87, Jan. 2013.)
    Retrieved from: https://www.elsevier.es/es-revista-revista-medica-clinica-las-condes-202-articulo-utilidad-clinica-oncologica-no-oncologica-S0716864013701329?referer=coleccion
    Retrieved on: Aug. 13, 2021
  5. M. A. Áliva-Rodríguez, H. Alva-Sánchez, “Radiofármacos para PET, una nueva perspectiva de la medicina nuclear molecular en México,” El Residente, vol. 5, núm. 3, páginas 103 – 110, Sep.-Dic. 2010. (M. A. Áliva-Rodríguez, H. Alva-Sánchez, “Radiopharmaceuticals for PET, a new perspective on molecular nuclear medicine in Mexico,” The Resident , vol. 5, no. 3, pp. 103 – 110, Sep.-Dec. 2010.)
    Retrieved from: https://www.medigraphic.com/pdfs/residente/rr-2010/rr103c.pdf
    Retrieved on: Aug. 13, 2021
  6. M. Wagner, F. Wuest, “The Radiopharmaceutical Chemistry of Fluorine-18: Electrophilic Fluorinations,” in Radiopharmaceutical Chemistry, J. S. Lewis, A. D. Windhorst, B. M. Zeglis, Eds., 1st ed., Cham, Switzerland: Springer, 2019, part II, pp. 285 – 295.
    Retrieved from: http://library.lol/main/EDAC45121994C3798BB6B701AFD5F3F5
    Retrieved on: Aug. 13, 2021
  7. M. Reivich et al., “The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man,” Circ. Res., vol. 44, no. 1, pp. 127 – 137, Jan. 1979.
    Retrieved from: https://www.ahajournals.org/doi/pdf/10.1161/01.RES.44.1.127
    Retrieved on: Aug. 13, 2021
  8. A. M. Rodríguez-Sánchez, “Establecimiento de controles de calidad para 18F-FDG sintetizada por hidrolisis básica y evaluación de dosis de cristalino de POE de radiofarmacia PET con EPD, OSL y TLD,” Tesis de maestría en ciencias, Instituto Balseiro, Física médica, San Carlos de Bariloche, Argentina, 2016. (A. M. Rodríguez-Sánchez, “Quality controls establishment for 18 F-FDG synthesidez by basic hydrolysis and evaluation of lens of the eyes doses of POE of radiopharmacy PET with EPD, OSL and TLD,” M.Sc. thesis, Balseiro Institute, Medical Physics, San Carlos de Bariloche, Argentina, 2016.)
    Retrieved from: http://ricabib.cab.cnea.gov.ar/579/1/1Rodriguez_S%C3%A1nchez.pdf
    Retrieved on: Jan. 30, 2021
  9. K. Hamacher, H. H. Coenen, G. Stöcklin , “Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution,” J. Nucl. Med., vol. 27, no. 2, pp. 235 – 238, Feb. 1986.
    Retrieved from: https://jnm.snmjournals.org/content/jnumed/27/2/235.full.pdf
    Retrieved on: Jan. 30, 2021
  10. M. C. López, “Procedimiento de fluoración para la síntesis de 2-[ 18F]-fluoro-2-desoxi-D-glucosa,” Patente ES 2347165 T3, España, Agosto 15, 2007. (M. C. López, “Fluorination procedure for the synthesis of 2- [18F] -fluoro-2-deoxy-D-glucose,” Patent ES 2347165 T3, Spain, Aug. 15, 2007.)
    Retrieved from: https://patentimages.storage.googleapis.com/8a/59/46/493718a8dd6706/ES2347165T3.pdf
    Retrieved on: Jan. 30, 2021
  11. F. Wuest, C. Hultsch, M. Berndt, R. Bergmann, “Direct labelling of peptides with 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG),Bioorg. Med. Chem. Lett., vol. 19, no. 18, pp. 5426 – 5428, Sep. 2009.
    Retrieved from: https://sci-hub.se/10.1016/j.bmcl.2009.07.108
    Retrieved on: Mar. 20, 2021
  12. Z. Li, P. S. Conti, “Radiopharmaceutical chemistry for positron emission tomography,” Adv. Drug Deliv. Rev., vol. 62, no. 11, pp. 1031 – 1051, Aug. 2010.
    Retrieved from: https://sci-hub.se/10.1016/j.addr.2010.09.007
    Retrieved on: Mar. 20, 2021
  13. O. Jacobson, X. Chen, “PET designated fluoride-18 production and chemistry,” Curr. Top. Med. Chem., vol. 10, no. 11, pp. 1048 – 1059, 2010.
    Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617500/pdf/nihms-454834.pdf
    Retrieved on: Mar. 20, 2021
  14. D. Larsen et al., “Exceptionally rapid oxime and hydrazone formation promoted by catalytic amine buffers with low toxicity,” Chem. Sci ., vol. 9, no. 23, pp. 5252 – 5259, May 2018.
    DOI: 10.1039/c8sc01082j
    PMid: 29997880
    PMCid: PMC6001384
  15. D. K. Kölmel, E. T. Kool, “Oximes and Hydrazones in Bioconjugation: Mechanism and Catalysis, Chem. Rev., vol. 117, no. 15, pp. 10358 – 10376, Aug. 2017.
    Retrieved from: https://sci-hub.se/10.1021/acs.chemrev.7b00090
    Retrieved on: Mar. 20, 2021
  16. X. G. Li, M. Haaparanta, O. Solin, “Oxime formation for fluorine-18 labeling of peptides and proteins for positron emission tomography (PET) imaging: A review, J. Fluor. Chem., vol. 143, pp. 49 – 56, Nov. 2012.