Vol. 6, 2021

Medical Imaging

High-quality iterative TOF MLEM reconstruction for short scans in total-body J-PET

R.Y. Shopa

Pages: 115–120

DOI: 10.37392/RapProc.2021.24

We introduce a list-mode time-of-flight maximum likelihood expectation maximisation (TOF MLEM) image reconstruction algorithm for the total-body Jagiellonian PET (J-PET) scanner, using an analytical model for the system response matrix (SRM), estimated as a log-polynomial fit of the Monte Carlo simulated emissions of back-to-back -photons for each bin. Using the GATE software, the updated method is tested on the simulated NEMA IEC phantom, scanned over a short 35-second time by the 140-cm long 24-module J-PET. By comparison to the reference TOF MLEM without the resolution modelling for the detectors from the CASToR framework, a significant improve-ment in image quality was observed. The inclusion of the penalisation into the reconstruction algorithm may achieve outcomes comparable to 500-second scans, with the best results obtained for the anisotropic median-diffusion with a finite-impulse-response median hybrid filter. The proposed TOF MLEM can also be extended to account for the non-collinearity, positron range and other factors.
  1. R. Ferrara, L. Mansi, “Paul Suetens (ed): Fundamentals of Medical Imaging (2nd edition),” Eur. J. Nucl. Med. Mol. Imaging, vol. 38, no. 2, 409, Feb. 2011.
    DOI: 10.1007/s00259-010-1694-8
  2. D. L. Bailey, D. W. Townsend, P. E. Valk, M. N. Maisey, Positron Emission Tomography: Basic Sciences, 1st ed., London, UK: Springer-Verlag, 2005.
    Retrieved from: http://library.lol/main/62ECAB329922072DF347CA01DC3AD401
    Retrieved on: Jul. 14, 2021
  3. S. Vandenberghe, P. Moskal, J. S. Karp, “State of the art in total body PET,” EJNMMI Phys., vol. 7, 35, May. 2020.
    DOI: 10.1186/s40658-020-00290-2
    PMid: 32451783
    PMCid: PMC7248164
  4. P. Moskal, E. Ł. Stępień, “Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators,” PET Clin., vol. 15, no. 4, pp. 439 - 452, Oct. 2020.
    DOI: 10.1016/j.cpet.2020.06.009
    PMid: 32739047
  5. R. D. Badawi et al., “First Human Imaging Studies with the EXPLORER Total-Body PET Scanner,” J. Nucl. Med., vol. 60, no. 3, pp. 299 - 303, Mar. 2019.
    DOI: 10.2967/jnumed.119.226498
    PMid: 30733314
    PMCid: PMC6424228
  6. S. R. Cherry et al., “Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care,” J. Nucl. Med., vol. 59, no. 1, pp. 3 - 12, Jan. 2018.
    DOI: 10.2967/jnumed.116.184028
    PMid: 28935835
    PMCid: PMC5750522
  7. P. Moskal et al., “Test of a single module of the J-PET scanner based on plastic scintillators,” Nucl. Instrum. Methods Phys. Res. A, vol. 764, pp. 317 - 321, Nov. 2014.
    DOI: 10.1016/j.nima.2014.07.052
  8. P. Moskal et al., “A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals,” Nucl. Instrum. Methods Phys. Res. A, vol. 775, pp. 54 - 62, Mar. 2015.
    DOI: 10.1016/j.nima.2014.12.005
  9. P. Moskal et al., “Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph,” Phys. Med. Biol., vol. 61, no. 5, pp. 2025 - 2047, Mar. 2016.
    DOI: 10.1088/0031-9155/61/5/2025
    PMid: 26895187
  10. S. Niedźwiecki et al., “J-PET: A New Technology for the Whole-body PET Imaging,” Acta Phys. Pol. B, vol. 48, no. 10, pp. 1567 - 1576, Oct. 2017.
    DOI: 10.5506/APhysPolB.48.1567
  11. N. G. Sharma et al., “Hit-Time and Hit-Position Reconstruction in Strips of Plastic Scintillators Using Multithreshold Readouts,” IEEE Trans. Radiat. Plasma Med. Sci., vol. 4, no. 5, pp. 528 - 537, Sep. 2020.
    DOI: 10.1109/TRPMS.2020.2990621
  12. S. Sharma et al., “Estimating relationship between the time over threshold and energy loss by photons in plastic scintillators used in the J-PET scanner,” EJNMMI Phys., vol. 7, 39, Jun. 2020.
    DOI: 10.1186/s40658-020-00306-x
    PMid: 32504254
    PMCid: PMC7275104
  13. P. Moskal et al., “Simulating NEMA characteristics of the modular total-body J-PET scanner-an economic total-body PET from plastic scintillators,” Phys. Med. Biol., vol. 66, no. 17, 175015, Sep. 2021.
    DOI: 10.1088/1361-6560/ac16bd
    PMid: 34289460
  14. L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging, vol. 1, no. 2, pp. 113 - 122, Oct. 1982.
    DOI: 10.1109/TMI.1982.4307558
    PMid: 18238264
  15. A. J. Reader, H. Zaidi, “Advances in PET Image Reconstruction,” PET Clin., vol. 2, no. 2, pp. 173 - 190, Apr. 2007.
    DOI: 10.1016/j.cpet.2007.08.001
    PMid: 27157872
  16. S. Jan et al., “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol., vol. 49, no. 19, pp. 4543 - 4561, Oct. 2004.
    DOI: 10.1088/0031-9155/49/19/007
    PMid: 15552416
    PMCid: PMC3267383
  17. Performance Measurements of Positron Emission Tomographs (PETs) , NEMA NU 2-2012, 2013.
    Retrieved from: https://webstore.ansi.org/standards/nema/nemanu2012-1451586#PDF
    Retrieved on: Jul. 14, 2021
  18. T. Merlin et al., “CASToR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction,” Phys. Med. Biol., vol. 63, no. 18, 185005, Sep. 2018.
    DOI: 10.1088/1361-6560/aadac1
    PMid: 30113313
  19. H. H. Barrett, T. White, L. C. Parra, “List-mode likelihood,” J. Opt. Soc. Am. A, vol. 14, no. 11, pp. 2914 - 2923, Nov. 1997.
    DOI: 10.1364/josaa.14.002914
    PMid: 9379247
    PMCid: PMC2969184
  20. A. Strzelecki, “Image reconstruction and simulation of strip Positron Emission Tomography scanner using computational accelerators,” Ph.D. dissertation, Polish Academy of Sciences, Institute of Fundamental Technological Research, Kraków, Poland, 2016.
    Retrieved from: https://oldwww.ippt.pan.pl/_download/doktoraty/2016strzelecki_a_doktorat.pdf
    Retrieved on: Jul. 14, 2021
  21. V. Westerwoudt, M. Conti, L. Eriksson, “Advantages of Improved Time Resolution for TOF PET at Very Low Statistics,” IEEE Trans. Nucl. Sci., vol. 61, no. 1, pp. 126 - 133, Feb. 2014.
    DOI: 10.1109/TNS.2013.2287175
  22. P. J. Green, “Bayesian reconstructions from emission tomography data using a modified EM algorithm,” IEEE Trans. Med. Imaging, vol. 9, no. 1, pp. 84 - 93, Mar. 1990.
    DOI: 10.1109/42.52985
  23. S. Alenius, U. Ruotsalainen, “Bayesian image reconstruction for emission tomography based on median root prior,” Eur. J. Nucl. Med., vol. 24, no. 3, pp. 258 - 265, Mar. 1997.
    DOI: 10.1007/BF01728761
    PMid: 9143462
  24. J. Nuyts, D. Beque, P. Dupont, L. Mortelmans, “A concave prior penalizing relative differences for maximum-a-posteriori reconstruction in emission tomography,” IEEE Trans. Nucl. Sci., vol. 49, no. 1, pp. 56 - 60, Feb. 2002.
    DOI: 10.1109/TNS.2002.998681
  25. H. Ling, A. C. Bovik, “Smoothing low-SNR molecular images via anisotropic median-diffusion,” IEEE Trans. Med. Imaging, vol. 21, no. 4, pp. 377 - 384, Apr. 2002.
    DOI: 10.1109/TMI.2002.1000261
    PMid: 12022625
  26. S. Alenius, U. Ruotsalainen, “Generalization of median root prior reconstruction,” IEEE Trans. Med. Imaging, vol. 21, no. 11, pp. 1413 - 1420, Nov. 2002.
    DOI: 10.1109/TMI.2002.806415
    PMid: 12575878
  27. J. Smyrski et al., “Measurement of gamma quantum interaction point in plastic scintillator with WLS strips,” Nucl. Instrum. Methods Phys. Res. A, vol. 851, pp. 39 - 42, Apr. 2017.
    DOI: 10.1016/j.nima.2017.01.045
  28. P. Kowalski et al., “Estimating the NEMA characteristics of the J-PET tomograph using the GATE package,” Phys. Med. Biol., vol. 63, no. 16, 165008, Aug. 2018.
    DOI: 10.1088/1361-6560/aad29b
    PMid: 29992906
  29. S. Li, M. Wang, H. Hou, J. Yang, X. Wang, “Fast algorithm for calculating the radiological path in fan-beam CT image reconstruction,” Optik, vol. 127, no. 5, pp. 2973 - 2977, Mar. 2016.
    DOI: 10.1016/j.ijleo.2015.12.034