Vol. 8, 2023

Radiation Detectors

IMAGE QUALITY IMPACT OF DIFFERENT PHOSPHOR ACTIVATOR MATERIALS IN Gd2O2S BASED EPID SYSTEMS

Marios K. Tzomakas, Vasiliki Peppa, Antigoni Alexiou, Georgios Karakatsanis, Anastasios Episkopakis, Christos Michail, Ioannis Valais, George Fountos, Ioannis S. Kandarakis, Nektarios Kalyvas

Pages: 60-64

DOI: 10.37392/RapProc.2023.13

In this work, the effect of the scintillator on EPIDs signal transfer properties was examined. Modulation Transfer Function, Signal Power Spectrum and Light Output were assessed by analytical models while radiation incidence was estimated by Monte Carlo techniques. The frequency dependent Contrast Transfer Function (CTF) of a Gd2O2 S:Tb based EPID system was experimentally determined by imaging the QC3 phantom in an iViewGT™ R3.4.1 MV Portal Imaging system for 6MV, 2MU and 400 DR irradiation conditions. In addition, an approximation of experimental MTF was determined. The Eu activator showed the highest light output per incident photon. A more detailed study should include the effect of scatter on MTF and the determination of the experimental MTF through CTF.
  1. F. Cremers et al., “Performance of electronic portal imaging devices EPID used in radiotherapy: Image quality and dose measurements,” Med. Phys ., vol. 31, no. 5, pp. 985 – 996, May 2004.
    DOI: 10.1118/1.1688212
    PMid: 15191282
  2. J. Seco, B. Clasie, M. Partridge, “Review on the characteristics of radiation detectors for dosimetry and imaging,” Phys. Med. Biol., vol 59, no. 20, pp. R303 – R347, Oct. 2014.
    DOI: 10.1088/0031-9155/59/20/R303
    PMid: 25229250
  3. S. J. Blake et al., “Characterization of optical transport effects on EPID dosimetry using Geant4,” Med. Phys., vol. 40, no. 4, 041708, Apr. 2013.
    DOI: 10.1118/1.4794479
    PMid: 23556878
  4. H. Gustafsson, P. Vial, Z. Kuncic, C. Baldock, P. B. Greer, “EPID dosimetry: Effect of different layers of materials on absorbed dose response,” Med. Phys., vol. 36, no. 12, pp. 5665 – 5674, Dec. 2009.
    DOI: 10.1118/1.3245886
    PMid: 20095279
  5. N. Dogan et al., “AAPM Task Group Report 307: Use of EPIDs for Patient-Specific IMRT and VMAT QA,” Med. Phys., vol. 50, no. 8, pp. e865 – e903, Aug. 2023.
    DOI: 10.1002/mp.16536
    PMid: 37384416
  6. Chia-Lung Chien, X. Zhao, B. Guo, R. Zhang, “Technical note: Preprocessing of portal images to improve image quality of VMAT-CT,” Med. Phys., Sep. 2023.
    DOI: 10.1002/mp.16741
    PMid: 37727132
  7. L. E. Antonuk, “Electronic portal imaging devices: a review and historical perspective of contemporary technologies and research,” Phys. Med. Biol ., vol. 47, no. 6, pp R31 – R65, Mar. 2002.
    DOI: 10.1088/0031-9155/47/6/201
    PMid: 11936185
  8. S. Y. Son et al., “Evaluation of Image Quality for Various Electronic Portal Imaging Devices in Radiation Therapy,” J. Radiol. Sci. Technol ., vol. 38, no. 4, pp. 451 – 461, Dec. 2015.
    DOI: 10.17946/JRST.2015.38.4.16
  9. I. J. Das et al., “A quality assurance phantom for electronic portal imaging devices,” J. Appl. Clin. Med. Phys., vol. 12, no. 2, pp. 39 1- 403, Feb. 2011.
    DOI: 10.1120/jacmp.v12i2.3350
    PMid: 21587179
    PMCid: PMC5718680
  10. J. Baek, H. Kim, B. Kim, Y. Oh, H. Jang, “Assessment of portal image resolution improvement using an external aluminum target and polystyrene electron filter,” Radiat. Oncol., vol. 14, no. 1, 70, Apr. 2019.
    DOI: 10.1186/s13014-019-1274-4
    PMid: 31023340
    PMCid: PMC6485051
  11. M. K. Tzomakas et al., “A phantom based evaluation of the clinical imaging performance of electronic portal imaging devices,” Helyion, vol. 9, no. 10, e21116, Oct. 2023.
    DOI: 10.1016/j.heliyon.2023.e21116
    PMid: 37916082
    PMCid: PMC10616349
  12. Z. Zarrini-Monfared, S. Karbasi, A. Zamani, M. A. Mosleh-Shirazi, “Full modulation transfer functions of thick parallel- and focused-element scintillator arrays obtained by a Monte Carlo optical transport model,” Med. Phys., vol. 50, no. 6, pp. 3651 – 3660, Oct. 2023.
    DOI: 10.1002/mp.16306
    PMid: 36779548
  13. S. David et al., “Evaluation of Gd2O2S:Pr granular phosphor properties for X-ray mammography imaging,” J. Lumin., vol. 169, pt. B, pp. 706 – 710, Jan. 2016.
    DOI: 10.1016/j.jlumin.2015.01.044
  14. C. M. Michail et al., “Evaluation of the Red Emitting Gd2O2S:Eu Powder Scintillator for Use in Indirect X-Ray Digital Mammography Detectors,” IEEE Trans. Nucl. Sci., vol. 58, no. 5, pp. 2503 – 2511, Oct. 2011.
    DOI: 10.1109/TNS.2011.2162002
  15. C. M. Michail et al., “Experimental and Theoretical Evaluation of a High Resolution CMOS Based Detector Under X-Ray Imaging Conditions IEEE Trans. Nucl. Sci. , vol. 58, no. 1, pp 314 – 322, Feb. 2011.
    DOI: 10.1109/TNS.2010.2094206
  16. C. M. Michail et al., “Light emission efficiency of Gd2O2S:Eu (GOS:Eu) powder screens under X-ray mammography conditions,” IEEE Trans. Nucl. Sci ., vol. 55, no. 6, pp. 3703 – 3709, Dec. 2008.
    DOI: 10.1109/TNS.2008.2007562
  17. C. M. Michail et al., “Light emission efficiency and imaging performance of Gd2O2S:Eu powder scintillator under x-ray radiography conditions,” Med. Phys., vol. 37, no. 7, pp. 3694 – 3703, Jul. 2010.
    DOI: 10.1118/1.3451113
    PMid: 20831077
  18. N. Kalyvas et al., “Studying the luminescence efficiency of Lu2O3:Eu nanophosphor material for digital X-ray imaging applications,” Appl. Phys. A , vol. 106, no. 1, pp. 131 – 136, Jan. 2012.
    DOI: 10.1007/s00339-011-6640-5
  19. I. E. Seferis et al., “On the response of a europium doped phosphor-coated CMOS digital imaging detector,” Nucl. Instrum. Methods Phys. Res. A , vol. 729, pp. 307 – 315, Nov. 2013.
    DOI: 10.1016/j.nima.2013.06.107
  20. I. E. Seferis et al., “Light emission efficiency and imaging performance of Lu2O3:Eu nanophosphor under X-ray radiography conditions: Comparison with Gd2O2S:Eu,” J. Lumin ., vol. 151, pp. 229 – 234, Jul. 2014.
    DOI: 10.1016/j.jlumin.2014.02.017
  21. S. David et al., “Evaluation of powder/granular Gd2O2S:Pr scintillator screens in single photon counting mode under 140 keV excitation,” JINST, vol 8, P01006, Jan. 2013.
    DOI: 10.1088/1748-0221/8/01/P01006
  22. C. Michail et al., “On the response of GdAlO3:Ce powder scintillators,” J. Lumin., vol. 144, pp. 45 – 52, Dec. 2013.
    DOI: 10.1016/j.jlumin.2013.06.041
  23. I. S. Kandarakis, “Luminescence in medical image science,” J. Lumin. , vol. 169, pp. 553 – 558, Nov. 2014.
    DOI: 10.1016/j.jlumin.2014.11.009
  24. N. B. Nill, Conversion between sine wave and square wave spatial frequency response of an imaging system , Rep. MTR 01B0000021, MITRE, Bedford (MA), USA, 2001.
    Retrieved from: https://www.mitre.org/sites/default/files/pdf/nill_conversion.pdf
    Retrieved on: May 8, 2023
  25. N. Kalyvas, P. Liaparinos, “Analytical and Monte Carlo comparisons on the optical transport mechanisms of powder phosphors,” Opt. Mater., vol. 88, pp. 396 – 405, Feb. 2019.
    DOI: 10.1016/j.optmat.2018.12.006
  26. J. Sempau, A. Badal, L. Brualla, “A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields,” Med. Phys., vol. 38, no. 11, pp. 5887 – 5895, Nov. 2011.
    DOI: 10.1118/1.3643029
    PMid: 22047353
  27. J. Sempau, E. Acosta, J. Baro, J. M. Fernández-Varea, F. Salvat, “An algorithm for Monte Carlo simulation of coupled electron-photon transport,” Nucl. Instrum. Methods Phys. Res. B, vol. 132, no. 3, pp. 377 – 390, Nov. 1997.
    DOI: 10.1016/S0168-583X(97)00414-X
  28. J. Baró, J. Sempau, J. M. Fernández-Varea, F. Salvat, “PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter,” Nucl. Instrum. Methods Phys. Res. B , vol. 100, no. 1, pp. 31 – 46, May 1995.
    DOI: 10.1016/0168-583X(95)00349-5
  29. F. Salvat, PENELOPE: A code system for Monte Carlo simulation of electron and photon transport , OECD Nuclear Energy Agency, Issy-les-Moulineaux, France, 2015.
  30. A. De Martinis et al., “Luminescence and Structural Characterization of Gd2O2S Scintillators Doped with Tb3+, Ce3+, Pr3+ and F for Imaging Applications,” Crystals, vol. 12, no. 6, 854, Jun. 2022.
    DOI: 10.3390/cryst12060854
  31. P. Liaparinos et al., “Grain Size Distribution Analysis of Different Activator Doped Gd2O2S Powder Phosphors for Use in Medical Image Sensors,” Sensors, vol. 22, no. 22, 8702, Nov. 2022.
    DOI: 10.3390/s22228702
    PMid: 36433300
    PMCid: PMC9695128
  32. I. Kandarakis, D. Cavouras, “Experimental and theoretical assessment of the performance of Gd2O2S:Tb and La2O2S:Tb phosphors and Gd2O2S:Tb-La2O2S:Tb mixtures for X-ray imaging,” Eur. Radiol., vol. 11, no. 6, pp. 1083 – 1091, May 2001.
    DOI: 10.1007/s003300000715
    PMid: 11419159
  33. R. Nowotny, XMuDat: Photon Attenuation Data on PC Version 1.0.1, Rep. IAEA-NDS-195, IAEA, Vienna, Austria, 1998.
    Retrieved from: https://nds.iaea.org/publications/nds/iaea-nds-0195/
    Retrieved on: May 8, 2023