Vol. 4, 2019

Original research papers

Radiation Protection


E. H. Ghanim, A. Salman, S. Harb

Pages: 78–82

DOI: 10.37392/RapProc.2019.16

In the present work, the specific activity concentrations of natural radionuclides of 238U and 232Th chain members, as well as 40K were measured in phosphate samples using a gamma-ray spectrometric technique based on high-resolution hyper-pure germanium detectors (HPGe). Samples were collected from the El-Sebaiya area at the Aswan zone, Egypt. The external hazard index(Hex), the external absorbed dose rates(D), the annual effective doses (E) and the excess lifetime cancer risk (ELCR) due to gamma radiation from these samples have been calculated and compared with the corresponding average worldwide values. The evaluations of the associated radiological hazards from these materials on the workers during mining processes in the El-Sebaiya area were carried out.
  1. R. I. Obed, I. P. Farai, N. N. Jibiri, “Population dose distribution due to soil radioactivity concentration levels in 18 cities across Nigeria,” J. Radiol. Prot., vol. 25, no. 3, pp. 305 – 312, Sep. 2005.
    DOI: 10.1088/0952-4746/25/3/007
    PMid: 16286693
  2. A. Rani, S. Singh, “Natural radioactivity levels in soil samples from some areas of Himachal Pradesh, India using γ-ray spectrometry,” Atmospheric Environ., vol. 39, no. 34, pp. 6306 – 6314, Nov. 2005.
    DOI: 10.1016/j.atmosenv.2005.07.050
  3. H. Orabi, A. Al-Shareaif, M. El-Galefi, “Gamma-ray measurements of naturally occurring radioactive sample from Alkharje City,” J. Radioanal. Nucl. Chem., vol. 269, no. 1, pp. 99 – 102, Jul. 2006.
    DOI: 10.1007/s10967-006-0237-z
  4. Sources and Effects of Ionizing Radiation, Rep. A/55/46, UNSCEAR, New York (NY), USA, 2000.
    Retrieved from: https://www.unscear.org/unscear/publications.html
    Retrieved on: Feb. 12, 2019
  5. L. Oosterhuis, “Radiological aspects of the non-nuclear industry in the Netherlands,” Radiat. Prot. Dosim., vol. 45, no. 1 – 4, pp. 703 – 705, Dec. 1992.
    DOI: 10.1093/rpd/45.1-4.703
  6. P. Becker, Phosphates and phosphoric acid: raw materials, technology, and economics of the wet process, New York (NY), USA: M. Decker, 1983.
    Retrieved from: https://libgen.is/book/index.php?md5=4967F430B4E5602346CD8848E61BCB2A
    Retrieved on: Feb. 27, 2019
  7. A. El-Gabar M. El-Arabi, I. H. Khalifa, “Application of multivariate statistical analyses in the interpretation of geochemical behaviour of uranium in phosphatic rocks in the Red Sea, Nile Valley and Western Desert, Egypt,” J. Environ. Radioact., vol. 61, no. 2, pp. 169 – 190, Dec. 2002.
    DOI: 10.1016/s0265-931x(01)00124-2
    PMid: 12066979
  8. A. G. E. Abbady, M. A. M. Uosif, A. El-Taher, “Natural radioactivity and dose assessment for phosphate rocks from Wadi El-Mashash and El-Mahamid Mines, Egypt,” J. Environ. Radioact., vol. 84, no. 1, pp. 65 – 78, 2005.
    DOI: 10.1016/j.jenvrad.2005.04.003
    PMid: 15951069
  9. S. El-Sharkawy, M. S. El-Tahawy, W. F. Bakr, A. Salman, “The activity concentrations of 226Ra, 232Th and 40K for the building materials in Sohag Region, Egypt,” J. Nucl. Radiat. Phys., vol. 10, no. 1 - 2, pp. 23 – 37, 2015.
    Retrieved from: http://www.afaqscientific.com/jnrp/v10n003.pdf
    Retrieved on: Jun. 5, 2019
  10. K. A. Allam, Z. Ahmed, S. El-Sharkawy, A. Salman, “Analysis and statistical treatment of 238U series isotopic ratios using gamma-ray spectrometry in phosphate samples,” Radiat. Prot. Environ., vol. 40, no. 3, pp. 110 – 115, Jan. 2017.
    DOI: 10.4103/rpe.RPE_30_17
  11. A. Salman, Z. Ahmed, K. A. Allam, S. El‑Sharkawy, “A comparative study for 235U radioactivity concentration calculation methods in phosphate samples,” Radiat. Prot. Environ., vol. 42, no. 1, pp. 5 – 9, Jan. 2019.
    DOI: 10.4103/rpe.RPE_77_18
  12. Sources and Effects of Ionizing Radiation, Rep. A/63/46, UNSCEAR, New York (NY), USA, 2008.
    Retrieved from: https://www.unscear.org/unscear/publications.html
    Retrieved on: Feb. 10, 2019
  13. J. Beretka, P. J. Matthew, “Natural radioactivity of Australian building materials, industrial wastes and by-products,” Health Phys., vol. 48, no. 1, pp. 87 – 95, Jan. 1985.
    DOI: 10.1097/00004032-198501000-00007
    PMid: 3967976
  14. K. A. Allam, “A methodology for evaluation of absorbed gamma dose-rate factors for radionuclides distribution in soil,” Radiat. Prot. Environ., vol. 39, no. 4, pp. 177 – 182, Jan. 2016.
    DOI: 10.4103/0972-0464.199975
  15. A. A. Qureshi et al., “Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan,” J. Radiat. Res. Appl. Sci., vol. 7, no. 4, pp. 438 – 447, Oct. 2014.
    DOI: 10.1016/j.jrras.2014.07.008
  16. The 2007 Recommendations of the International Commission on Radiological Protection, vol. 37, ICRP Publication no. 103, ICRP, Ottawa, Canada, 2007.
    Retrieved from: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_37_2-4
    Retrieved on: Apr. 10, 2019
  17. M. T. Kaleel, M. J. Mohammad, “Natural radioactivity levels and estimation of radiation exposure in environmental soil samples from Tulkarem province-Palestine,” Open J. Soil Sci., vol. 2, no. 1, pp. 7 – 16, Mar. 2012.
    DOI: 10.4236/ojss.2012.21002
  18. M. Rafique et al., “Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley,” J. Radiat. Res. Appl. Sci., vol. 7, no. 1, pp. 29 – 35, Jan. 2014.
    DOI: 10.1016/j.jrras.2013.11.005
  19. 1990 Recommendations of the International Commission on Radiological Protection, vol. 21, ICRP Publication no. 60, ICRP, Ottawa, Canada, 1991.
    Retrieved from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%2060
    Retrieved on: Oct. 11, 2019