Vol. 4, 2019

Original research papers

Radiation in Medicine


А. Tsygankova, V. Каnygin, А. Каsatova, Е. Zavjalov, Т. Guselnikova, А. Kichigin, R. Mukhamadiyarov

Pages: 23–29

DOI: 10.37392/RapProc.2019.06

To accompany boron neutron capture therapy for cancerous tumours, there has been an optimised ICP-AES method for boron determination in animals’ organs tissues. This technique is characterised by its universalism. The approach comprises preliminary acid decomposition at high temperatures and pressure (if necessary), ICP-AES boron determination in the gained solutions analysing comparative samples basing on a single element solution. Its validity is proved by the spike experiment and mass sample variation test. The ICP-AES method is used during the evaluation of BPA and BSH accumulation in organs and tissues when intravenously injecting U87 glioblastoma medication to SCID mice of SPF-status.
  1. R. F. Barth et al., “Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer,” Radiat. Oncol., vol. 7, no. 1, p. 146, Aug. 2012.
    DOI: 10.1186/1748-717X-7-146
    PMid: 22929110
    PMCid: PMC3583064
  2. R. F. Barth, Z. Zhang, T. Liu, “A realistic appraisal of boron neutron capture therapy as a cancer treatment modality,” Cancer Commun., vol. 38, no. 1, p. 36, Jun. 2018.
    DOI: 10.1186/s40880-018-0280-5
    PMid: 29914575
    PMCid: PMC6006699
  3. В. В. Каныгин, А. И. Кичигин, Н. В. Губанова, С. Ю. Таскаев, “Возможности бор-нейтронозахватной терапии в лечении злокачественных опухолей головного мозга,” Вестник рентгенологии и радиологии, но. 6, cтр. 36 - 42, 2015. (V. V. Kanygin, A. I. Kichigin, N. V. Gubanova, S. Y. Taskaev, “Possibilities of boron neutron capture therapy in the treatment of malignant brain tumors,” J. Radiol. Nucl. Med., no. 6, pp. 36 - 42, 2015.)
    DOI: 10.20862/0042-4676-2015-0-6-142-142
  4. S. Y. Taskaev et al., “Opportunities for using an accelerator-based epithermal neutron source for boron neutron capture therapy,” ‎Biomed. Eng., vol. 52, no. 2, pp. 73 - 76, Jul. 2018.
    DOI: 10.1007/s10527-018-9785-0
  5. С. Ю. Таскаев и др., “Перспективы использования ускорительного источника эпитепловых нейтронов для бор-нейтронозахватной терапии,” Медицинская техника, т. 308, но. 2, cтр. 1 - 3, 2018. (S. Y. Taskaev et al., “Prospects for the use of an accelerating source of epithermal neutrons for boron-neutron capture therapy,” Med. Equip., vol. 308, no. 2, pp. 1 - 3, 2018.)
    Retrieved from: https://elibrary.ru/item.asp?id=34878615
    Retrieved on: Aug. 15, 2019
  6. J. A. Coderre, D. D. Joel, P. L. Micca, M. M. Nawrocky, D. N. Slatkin, “Control of intracerebral gliosarcomas in rats by boron neutron capture therapy with p-boronophenylalanine,” Radiat. Res., vol. 129, no. 3, pp. 290 - 296, Mar. 1992.
    DOI: 10.2307/3578028
    PMid: 1542717
  7. J. A. Coderre et al., “Neutron capture therapy of the 9L rat gliosarcoma using the p-boronophenylalanine-fructose complex,” Int. J. Radiat. Oncol. Biol. Phys., vol. 30, no. 3, pp. 643 - 652, Oct. 1994.
    DOI: 10.1016/0360-3016(92)90951-d
    PMid: 7928496
  8. K. Ono, Y. Kinashi, M. Suzuki, M. Takagaki, S. Masunaga, “The combined effect of electroporation and borocaptate in boron neutron capture therapy for murine solid tumors,” Jpn. J. Cancer Res., vol. 91, no .8, pp. 853 - 858, Aug. 2000.
    DOI: 10.1111/j.1349-7006.2000.tb01024.x
    PMid: 10965028
    PMCid: PMC5926423
  9. D. D. Joel, J. A. Coderre, P. L. Micca, M. M. Nawrocky, “Effect of dose and infusion time on the delivery of p-boronophenylalanine for neutron capture therapy,” J. Neurooncol., vol. 41, no. 3, pp. 213 - 221, Feb. 1999.
    DOI: 10.1023/A: 100617690
    PMid: 10359141
  10. A. Deagostino et al., “Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications,” Future Med. Chem., vol. 8, no. 8, pp. 899 - 917, May 2016.
    DOI: 10.4155/fmc-2016-0022
    PMid: 27195428
  11. P. Agüi-Gonzalez, S. Jähne, N. T. N. Phan, “SIMS imaging in neurobiology and cell biology,” J. Anal. At. Spectrom., vol. 34, no. 7, pp. 1355 - 1368, 2019.
    DOI: 10.1039/C9JA00118B
  12. Y. C. Lin et al., “Macro-and microdistributions of boron drug for boron neutron capture therapy in an animal model,” Anticancer Res., vol. 32, no. 7, pp. 2657 - 2664, Jul. 2012.
    PMid: 22753723
  13. P. J. Kueffer et al., “Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes,” Proc. Natl. Acad. Sci. U.S.A., vol. 110, no. 16, pp. 6512 - 6517, Apr. 2013.
    DOI: 10.1073/pnas.1303437110
    PMid: 23536304
    PMCid: PMC3631690
  14. A. Matsumura et al., “A new boronated porphyrin (STA-BX909) for neutron capture therapy: an in vitro survival assay and in vivo tissue uptake study,” Cancer Lett., vol. 141, no. 1 - 2, pp. 203 - 209, Jul. 1999.
    DOI: 10.1016/s0304-3835(99)00105-6
    PMid: 10454263
  15. M. A. Garabalino et al., “Boron biodistribution for BNCT in the hamster cheek pouch oral cancer model: combined administration of BSH and BPA,” Appl. Radiat. Isot., vol. 88, pp. 64 - 68, Jun. 2014.
    DOI: 10.1016/j.apradiso.2013.11.118
    PMid: 24360859
  16. M. Carpano et al., “Experimental Studies of Boronophenylalanine ((10)BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment,” Int. J. Radiat. Oncol. Biol. Phys., vol. 93, no. 2, pp. 344 - 352, Oct. 2015.
    DOI: 10.1016/j.ijrobp.2015.05.039
    PMid: 26232853
  17. R. F. Barth et al., “Evaluation of unnatural cyclic amino acids as boron delivery agents for treatment of melanomas and gliomas,” Appl. Radiat. Isot., vol. 88, pp. 38 - 42, Jun. 2014.
    DOI: 10.1016/j.apradiso.2013.11.133
    PMid: 24393770
    PMCid: PMC4049841
  18. M. A. Dagrosa et al., “Selective uptake of p-borophenylalanine by undifferentiated thyroid carcinoma for boron neutron capture therapy,” Thyroid, vol. 12, no. 1, pp .7 - 12, Jan. 2002.
    DOI: 10.1089/105072502753451904
    PMid: 11838734
  19. A. Doi et al., “Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy,” J. Neurooncol., vol. 87, no. 3, pp. 287 - 294, May 2008.
    DOI: 10.1007/s11060-008-9522-8
    PMid: 18219552
  20. J. Hiratsuka, K. Yoshino, H. Kondoh, Y. Imajo, Y. Mishima, “Biodistribution of boron concentration on melanoma‐bearing hamsters after administration of p‐, m‐, o‐boronophenylalanine,” Jpn. J. Cancer Res., vol. 91, no. 4, pp. 446 - 450, Apr. 2000.
    DOI: 10.1111/j.1349-7006.2000.tb00965.x
    PMid: 10804294
    PMCid: PMC5926464
  21. M. Białek-Pietras, A. B. Olejniczak, S. Tachikawa, H. Nakamura, Z. J. Leśnikowski, “Towards new boron carriers for boron neutron capture therapy: metallacarboranes bearing cobalt, iron and chromium and their cholesterol conjugates,” Bioorg. Med. Chem., vol. 21, no. 5, pp. 1136 - 1142, Mar. 2013.
    DOI: 10.1016/j.bmc.2012.12.039
    PMid: 23357039
  22. J. Laakso et al., “Atomic emission method for total boron in blood during neutron-capture therapy,” Clin. Chem., vol. 47, no. 10, pp. 1796 - 1803, Oct. 2001.
    PMid: 11568089
  23. M. Korkmaz et al., “Estimation of human daily boron exposure in a boron-rich area,” Br. J. Nutr., vol. 98, no. 3, pp. 571 - 575, Sep. 2007.
    DOI: 10.1017/S000711450770911X
    PMid: 17419890
  24. R. Rahil-Khazen, B. J. Bolann, R. J. Ulvik, “Trace element reference values in serum determined by inductively coupled plasma atomic emission spectrometry,” Clin. Chem. Lab. Med., vol. 38, no. 8, pp. 765 - 772, Aug. 2000.
    DOI: 10.1515/CCLM.2000.109
    PMid: 11071071
  25. В. И. Федоров, “К проблеме определения микроэлементов в сыворотке крови человека,” Аналитика и контроль, т. 9, но. 4, cтр. 358 - 366, Mар. 2005. (V. I. Fedorov, “On the problem of determining trace elements in human serum,” Anal. Control, vol. 9, no. 4, pp. 358 - 366, Mar. 2005.)
    Retrieved from: http://elar.urfu.ru/bitstream/10995/58893/1/aik-2005-04-03.pdf
    Retrieved on: Aug. 12, 2019
  26. A. Wittig et al., “Boron analysis and boron imaging in biological materials for Boron Neutron Capture Therapy (BNCT),” Crit. Rev. Oncol. Hematol., vol. 68, no. 1, pp. 66 - 90, Oct. 2008.
    DOI: 10.1016/j.critrevonc.2008.03.004
    PMid: 18439836
  27. S. Evans, U. Krähenbühl, “Boron analysis in biological material: microwave digestion procedure and determination by different methods,” Fresenius` J. Anal. Chem., vol. 349, no. 6, pp. 454- 459. Jun. 1994.
    Retrieved from: https://link.springer.com/article/10.1007/BF00322933
    Retrieved on: Jul. 27, 2019
  28. D. H. Sun, J. K. Waters, T. P. Mawhinney, “Microwave digestion and ultrasonic nebulization for determination of boron in animal tissues by inductively coupled plasma atomic emission spectrometry with internal standardization and addition of mannitol,” J. Anal. At. Spectrom., vol. 12, no. 6, pp. 675 - 679, Jun. 1997.
    Retrieved from: https://www.uvm.edu/cosmolab/boron/boronbyicp.pdf
    Retrieved on: Jun. 11, 2019
  29. T. U. Probst et al., “Comparison of inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry with quantitative neutron capture radiography for the determination of boron in biological samples from cancer therapy,” J. Anal. At. Spectrom., vol. 12, no. 10, pp. 1115 - 1122, Oct. 1997.
    DOI: 10.1039/a700445a
  30. A. S. Al-Ammar, R. K. Gupta, R. Barnes, “Elimination of boron memory effect in inductively coupled plasma-mass spectrometry by ammonia gas injection into spray chamber during analysis,” Spectrochimica Acta Part B: At. Spectrosc., vol. 55, no. 6, pp. 629 - 635, Jun. 2000.
    DOI: 10.1016/S0584-8547(00)00197-X
  31. N. P. Zaksas, T. T. Sultangazieva, T. M. Korda, “Using a two-jet arc plasmatron for determining the trace element composition of powdered biological samples,” J. Anal. Chem., vol. 61, no. 6, pp. 582 - 587, Jun. 2006.
    DOI: 10.1134/S1061934806060128
  32. N. P. Zaksas et al., “Effect of CoCl2 treatment on major and trace elements metabolism and protein concentration in mice,” J. Trace Elem. Med. Biol., vol. 27, no. 1, pp. 27 - 30, Jan. 2013.
    DOI: 10.1016/j.jtemb.2012.07.005
    PMid: 22944586
  33. Ж. Ж. Жеенбаев, В. С. Энгельшт, Двухструйный плазмотрон, Фрунзе, Киргизия: Илим, 1983. (Z. Z. Zheenbaev, V. S. Engelsht, Two-jet plasmatron, Frunze, Kyrgyzstan: Ilim, 1983.
    Retrieved from: https://rusneb.ru/catalog/000199_000009_001177139/
    Retrieved on: Feb. 20, 2019
  34. А. Р. Цыганкова, Г. В. Макашова, И. Р. Шелпакова, “Зависимость интенсивности спектральных линий элементов от мощности ИСП-плазмы и расхода аргона,” Методы и объекты химического анализа, т. 7, но. 3, cтр. 138 - 142, 2012. (A.R. Tsygankova, G. V. Makashova, I. R. Shelpakova, “Dependence of the intensity of the spectral lines of elements on the power of ICP plasma and argon consumption.,” Methods and Objects of Chem. Anal., vol. 7, no. 3, pp. 138 - 142, 2012.)
    Retrieved from: http://www.moca.net.ua/12/3/pdf/07032012_138-142.pdf
    Retrieved on: Nov. 10, 2019
  35. A. Kramida, Y. Ralchenko, J. Reader, Atomic Spectra Database version 5.6.1, NIST, Gaithersburg (MD), US, 2018.
    Retrieved from: https://www.nist.gov/pml/atomic-spectra-database
    Retrieved on: Mar. 13, 2019
  36. А. Н. Зайдель, В. К. Прокофьев, С. М. Райский, Таблицы спектральных линий, Москва, Россия: Издательство Наука, 1969. (A. N. Zaidel, V. K. Prokofiev, S. M. Rayskiy, Tables of spectral lines, Moscow, Russia: Publishing House Science, 1969.)
    Retrieved from: https://buklit.ru/book_133920_tablicy_spektralnyh_linij.html
    Retrieved on: Jan. 19, 2019