Alex Mutale, Ercan Yilmaz, Oktay Aytar

Pages: 40–44

DOI: 10.37392/RapProc.2022.10

The investigations of gamma irradiation response on silicon nanowires (SiNWs) based MOS capacitor with high- k of Yb2O3 is very important in the fields of semiconductors physics and nanotechnology. Hence, in this current work, we fabricated SiNWs using metal assisted chemical etching (MACE) technique and then Al/Yb 2O3/SiNWs/n-Si (100)/Al MOS capacitor was exposed to gamma rays using Co-60 source at different doses of 0-4Gy, respectively. Our experimental results demonstrated that the capacitance value in the accumulation region decreased with increasing in the radiation dose, while the C-V curves shifted toward negative voltage side. In addition, the interface states density (Dit) increased with an increase in the gamma irradiation exposure. The value of Dit was found in the range of 6.98×1009 eV-1 cm-2 and 1.14×1010 eV-1 cm-2.
  1. A. Enache et al., “PLL-Based Readout Circuit for SiC-MOS Capacitor Hydrogen Sensors in Industrial Environments,” Sensors, vol. 22, no. 4, 1462, Feb. 2022.
    DOI: 10.3390/s22041462
    PMid: 35214371
    PMCid: PMC8879939
  2. C. Lu, Z. Chen, K. Saito, “Hydrogen sensors based on Ni/SiO2/Si MOS capacitors,” Sens. Actuators B Chem., vol. 122, no. 2, pp. 556 – 559, Mar. 2007.
    DOI: 10.1016/j.snb.2006.06.029
  3. K. I. Chen, B. R. Li, Y. T. Chen, “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation,” Nano Today, vol. 6, no. 2, pp. 131 – 154, Apr. 2011.
    DOI: 10.1016/j.nantod.2011.02.001
  4. Y. Li et al., “Study of γ-ray irradiation influence on TiN/HfO2/Si MOS capacitor by C-V and DLTS,” Superlattices Microstruct., vol. 120, pp. 313 – 318, Aug. 2018.
    DOI: 10.1016/j.spmi.2018.05.046
  5. J. Shi et al., “Synergistic effects in MOS capacitors with an Au/HfO2-SiO2/Si structure irradiated with neutron and gamma ray,” J. Phys. D: Appl. Phys., vol. 55, no. 11, 115104, Mar. 2022.
    DOI: 10.1088/1361-6463/ac3ce8
  6. F. B. Ergin, R. Turan, S. T. Shishiyanu, E. Yilmaz, “Effect of γ-radiation on HfO2 based MOS capacitor,” Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At., vol. 268, no. 9, pp. 1482 – 1485, May 2010.
    DOI: 10.1016/j.nimb.2010.01.027
  7. A. Tataroʇlu, M. Yildirim, H. M. Baran, “Dielectric characteristics of gamma irradiated Au/SnO2/n-Si/Au (MOS) capacitor,” Mater. Sci. Semicond. Process., vol. 28, pp. 89 – 93, Dec. 2014.
    DOI: 10.1016/j.mssp.2014.06.053
  8. M. Ding, “Radiation Response of AI2O3 based Metal-Oxide-Semiconductor Structures under Gamma-ray,” IOP Conf. Ser.: Earth Environ. Sci., vol. 742, no. 1, 012014, May 2021.
    DOI: 10.1088/1755-1315/742/1/012014
  9. A. Kahraman, A. Mutale, R. Lok, E. Yilmaz, “Effect of high-radiation-dose-induced structural modifications of HfSiO4/n-Si on electrical characteristics,” Radiat. Phys. Chem., vol. 196, 110138, Jul. 2022.
    DOI: 10.1016/j.radphyschem.2022.110138
  10. K. M. Chintala, S. Panchal, P. Rana, R. P. Chauhan, “Structural, optical and electrical properties of gamma-rays exposed selenium nanowires,” J. Mater. Sci. Mater. Electron., vol. 27, no. 8, pp. 8087 – 8093, Aug. 2016.
    DOI: 10.1007/s10854-016-4808-7
  11. H. Shehla et al., “γ -Rays Irradiation Induced Structural and Morphological Changes in Copper Nanowires,” J. Nanomater., vol. 2016, 6134801, Sep. 2016.
    DOI: 10.1155/2016/6134801
  12. A. Reyhani, A. Gholizadeh, V. Vahedi, M. R. Khanlari, “Effect of gamma radiation on the optical and structural properties of ZnO nanowires with various diameters,” Opt. Mater., vol. 75, pp. 236 – 242, Jan. 2018.
    DOI: 10.1016/j.optmat.2017.10.027
  13. N. Manikanthababu, N. Arun, M. Dhanunjaya, S. V. S. Nageswara Rao, A. P. Pathak, “Gamma irradiation-induced effects on the electrical properties of HfO2-based MOS devices,” Radiat. Eff. Defects Solids, vol. 171, no. 1 – 2, pp. 77 – 86, Feb. 2016.
    DOI: 10.1080/10420150.2015.1135152
  14. A. Kaur, R. P. Chauhan, “Effect of gamma irradiation on electrical and structural properties of Zn nanowires,” Radiat. Phys. Chem., vol. 100, pp. 59 – 64, Jul. 2014.
    DOI: 10.1016/j.radphyschem.2014.03.027
  15. A. Kahraman, S. C. Deevi, E. Yilmaz, “Influence of frequency and gamma irradiation on the electrical characteristics of Er2O3, Gd2O3, Yb2O3, and HfO2 MOS-based devices,” J. Mater. Sci., vol. 55, no. 19, pp. 7999 – 8040, Jul. 2020.
    DOI: 10.1007/s10853-020-04531-8
  16. Y. S. Rammah, A. A. Ali, R. El-Mallawany, F. I. El-Agawany, “Fabrication, physical, optical characteristics and gamma-ray competence of novel bismo-borate glasses doped with Yb2O3 rare earth,” Physica B Condens. Matter, vol. 583, 412055, Apr. 2020.
    DOI: 10.1016/j.physb.2020.412055
  17. S. K. Meena, L. Meena, N. L. Heda, B. L. Ahuja, “High energy γ-ray Compton spectroscopy and electronic response of rare earth sesquioxides Er2O3 and Yb2O3,” Radiat. Phys. Chem., vol. 176, 108990, Nov. 2020.
    DOI: 10.1016/j.radphyschem.2020.108990
  18. Z. Huang, N. Geyer, P. Werner, J. De Boor, U. Gösele, “Metal-assisted chemical etching of silicon: A review,” Adv. Mater., vol. 23, no. 2, pp. 285 – 308, Jan. 2011.
    DOI: 10.1002/adma.201001784
    PMid: 20859941
  19. M. Gayrard et al., “Replacing Metals with Oxides in Metal-Assisted Chemical Etching Enables Direct Fabrication of Silicon Nanowires by Solution Processing,” Nano Lett., vol. 21, no. 5, pp. 2310 – 2317, Mar. 2021.
    DOI: 10.1021/acs.nanolett.1c00178
    PMid: 33600718
  20. A. Kahraman, H. Karacali, E. Yilmaz, “Impact and origin of the oxide-interface traps in Al/Yb2O3/n-Si/Al on the electrical characteristics,” J. Alloys Compd., vol. 825, 154171, Jun. 2020.
    DOI: 10.1016/j.jallcom.2020.154171
  21. A. H. Chiou, T. C. Chien, C. K. Su, J. F. Lin, C. Y. Hsu, “The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching,” Curr. Appl. Phys., vol. 13, no. 4, pp. 717 – 724, Jun. 2013.
    DOI: 10.1016/j.cap.2012.11.011
  22. A. Mutale, E. Yilmaz, “Frequency Dependent Electrical Characteristics of Al/SiO2/SiNWs/n-Si MOS Capacitors,” RAP Conf. Proc., vol. 6, pp. 91 – 96, 2021.
    DOI: 10.37392/rapproc.2021.19
  23. A. Mutale, S. C. Deevi, E. Yilmaz, “Effect of annealing temperature on the electrical characteristics of Al/Er2O3/n-Si/Al MOS capacitors,” J. Alloys Compd., vol. 863, 158718, May 2021.
    DOI: 10.1016/j.jallcom.2021.158718
  24. M. Naffeti, P. A. Postigo, R. Chtourou, M. A. Zaïbi, “Elucidating the effect of etching time key-parameter toward optically and electrically-active silicon nanowires,” Nanomaterials, vol. 10, no. 3, 404, Feb. 2020.
    DOI: 10.3390/nano10030404
    PMid: 32106503
    PMCid: PMC7152846
  25. K. S. Mohan, A. Panneerselvam, J. Chandrasekaran, R. Marnadu, M. Shkir, “An in-depth examination of opto-electrical properties of In-Yb2O3 thin films and fabricated Al/In-Yb2O3/p-Si (MIS) hetero junction diodes,” Appl. Nanosci., vol. 11, no. 5, pp. 1617 – 1635, May 2021.
    DOI: 10.1007/s13204-021-01817-4
  26. R. Rana, J. Chakraborty, S. K. Tripathi, M. Nasim, “Study of conducting ITO thin film deposition on flexible polyimide substrate using spray pyrolysis,” J. Nanostructure Chem., vol. 6, no. 1, pp. 65 – 74, Mar. 2016.
    DOI: 10.1007/s40097-015-0177-7
  27. L. U. Vinzons et al., “Unraveling the morphological evolution and etching kinetics of porous silicon nanowires during metal-assisted chemical etching,” Nanoscale Res. Lett., vol. 12, no. 1, 385, Dec. 2017.
    DOI: 10.1186/s11671-017-2156-z
    PMid: 28582967
    PMCid: PMC5457386
  28. A. Kahraman, U. Gurer, E. Yilmaz, “The effect and nature of the radiation induced oxide-interface traps on the performance of the Yb2O3 MOS device,” Radiat. Phys. Chem., vol. 177, 109135, Dec. 2020.
    DOI: 10.1016/j.radphyschem.2020.109135
  29. J. Zhang et al., “Studies of radiation effects in Al2O3-based metal-oxide-semiconductor structures induced by Si heavy ions,” J. Appl. Phys., vol. 125, no. 11, 115701, Mar. 2019.
    DOI: 10.1063/1.5052584
  30. S. Maurya, “Effect of zero bias Gamma ray irradiation on HfO2 thin films,” J. Mater. Sci. Mater. Electron., vol. 27, no. 12, pp. 12796 – 12802, Dec. 2016.
    DOI: 10.1007/s10854-016-5412-6