ANTIMICROBIAL ACTIVITY AND REDOX PROPERTY OF Ni(II) COMPLEXES WITH ORTHO- AND META-DIPHENOL DERIVATIVES

K.A. Nabebina1,2*, N.V. Loginova1,2, T.V. Kovalchuk-Rabchinskaya1, G.A. Ksendzova2, N.P. Osipovich2

1Belarusian State University, Minsk, Republic of Belarus
2Research Institute for Physical-Chemical Problems, Minsk, Republic of Belarus

Abstract. The redox-activity of novel bioactive Ni(II) complexes with ortho- and meta-diphenols was investigated. Amorphous water insoluble complexes with general formula NiL2 were synthesized according to the authorial method. It was found that the complexes are highly lipophilic (lgPow = 2.5÷3.5), stable in water-organic media (stability constants logarithm lgβ=15-18) and have a non-electrolyte nature. Voltammetry analysis was used to determine the first oxidation peak (Epa, V) as a thermodynamic criterion of compounds’ reducing ability. It was found that complexes with ortho-diphenol derivatives possess stronger reducing ability then the complexes with meta-diphenol. Antimicrobial activity of Ni(II) complexes against Mycobacterium smegmatis and Candida albicans were evaluated. Intricate dependence between reducing ability and bactericidal activity was found.

Keywords: Nickel(II) complexes, ortho-diphenol derivatives, meta-diphenol derivatives, lipophilicity, voltammetry, antimicrobial activity

1. INTRODUCTION

According to the current epidemiological situation, 8 million new cases of Tuberculosis infection caused by Mycobacterium tuberculosis emerge annually [1]. One of the biggest issues in tuberculosis controlling is the emergence of extensively drug-resistant and totally drug-resistant Mycobacterium spp., sustainable to commonly used antymycobacterial agents [2]. Consequently, there is a pressing need to develop new antibacterials with novel mechanisms of action, rapid antimicrobial activity, and safety.

Phenol and its derivatives are well-known in medical practice [3]. The hydroxyl groups attached to an aromatic ring ensure phenol activity in radical and redox processes which explains a wide range of exhibited properties (enzymes inhibitory, antioxidant, antimicrobial, fungicide, antimalarial, anticancer, etc.) [4]. When applied to Mycobacterium spp., it was shown that phenol derivatives disrupt electron transport chain activity, what significantly affects the pathogens survival and virulence [5-7].

Nowadays, the main drawback limiting the use of phenol derivatives is their toxicity. This issue might be overcome by the introduction of substituents into the benzene ring and metal complexation, which change the hydrophilic-lipophilic properties of a compound, allowing one not only to achieve an optimal antimicrobial effect, but also to broaden the activity spectrum of these derivatives and decrease their toxicity [8-11].

Unlike many antibiotics, metal complexes with phenolic derivatives can realize several mechanisms of biocidal action mainly caused by the metal ions, what makes a probability of pathogens’ resistance development negligibly small. Besides, bioactive metal complexes also have other advantages over antibiotics: a low induction of resistance in many pathogenic microorganisms against ions of transition metals, a broad spectrum of activity (antibacterial, antifungal and antiviral), and safety in therapeutic doses (due to the oligodynamic effect of transition metal ions) [12].

In this paper, we discussed the presumed interconnection of antymycobacterial and antifungal activities against Mycobacterium smegmatis and Candida albicans, redox properties and lipophilicity of Ni(II) complexes with ortho- and meta-diphenol derivatives. Nickel was chosen as the coordination center due to its involvement in hydrolytic and redox processes in vivo, as well as in some enzymes (urease, carbon monoxide dehydrogenase, acetyl-CoA synthetase, superoxidisedismyehase etc.) functioning [13].

2. EXPERIMENTAL PART

2.1 Synthesis of the Ni(II) complexes with ortho- and meta-diphenol derivatives

Ni(II) complexes with 3-(X-1-ylmethyl)-5-tritylbenezene-1,2-diol (HL1 - HL3) and 2-(X-1-ylmethyl)-4,6-di-tert-butybenzene-1,3-diol (HL10 -
complexes are stable up to 150°C. Their decomposition Thermogravimetric analyses showed that NiL complexes are found to be amorphous with halo diffraction patterns in the 2θ range from 10° to 20°. Their decomposition in the temperature range from 200° to 800°C is accompanied with ligand destruction and the formation of nickel(II) oxide as the final product. No peaks pointing to the presence of the solvent molecules in the coordination core were found. The composition and structure analysis of the coordination core done by means of IR, UV-vis and EPR spectroscopy was discussed in [21–22]. NiL complexes with abovementioned diphenol derivatives have distorted square-planar geometry with two diphenol molecules in monoanionic form chelating to the central Ni(II) ion (Figure 1, 2).

Since one of the main requirements for antimicrobials is their ability to penetrate cellular walls and membranes, complexes’ lipophilicity should be considered when developing these bioactive compounds. It was found that the highest values of the n-octanol/water partition coefficient (lgP_{ow}) belong to Ni(II) complexes of meta-diphenols, containing piperidine (Ni(L\textsubscript{III})\textsubscript{2}), azepan (Ni(L\textsubscript{III})\textsubscript{2}) and morpholine (Ni(L\textsubscript{V})\textsubscript{2}) moiety. The complexes with ortho-diphenols Ni(L\textsubscript{II})\textsubscript{2}–Ni(L\textsubscript{II})\textsubscript{2} are characterized by lower lipophilicity parameters (lgP_{ow} = 2.9±3.3). The leastened lipophilicity (lgP_{ow} = 2.5±2.6) belongs to Ni(II) complexes of meta-diphenols, containing pyrrolidine (Ni(HL\textsubscript{III})\textsubscript{2}) and 4-methylpiperazine (Ni(L\textsubscript{V})\textsubscript{2}) moiety. The lipophilicity values of Ni(II) complexes suggest their potential ability for transmembrane transfer and are also important for the assessment of their bioavailability as well as their antimicrobial activity [25].

2.2 Physico-chemical characterization

The stability constants of Ni(II) ions with diphenol derivatives were investigated by means of potentimetric titration in a water-ethanol medium, using the Microprocessor laboratory ion meter I-160MP, under argon atmosphere and constant ionic strength. The elemental composition of compounds was found according to a method reported elsewhere [15]. The molar conductivity values of Ni(II) complexes’ solutions (10^{-3} \text{mol} L^{-1}) in acetonitrile were measured using the TESLA BMS91 conductometer. The X-ray diffraction analysis (XRD) was carried out using DRON-2 (CuK\textsubscript{a}-emission). The redox-properties of Ni(II) complexes were evaluated by the means of the cyclic voltammetry method in the potential range from -2.2 to +2.2 V, using a de-aerated acetonitrile solution of these compounds [16–19]. The lipophilicity test was made by determining the n-octanol/water partition coefficient (P_{ow}) [20].

2.3 The structure and composition of the coordination core

For IR, UV-vis spectrometry data, as well as computational details for Ni(II) complexes with abovementioned ligands see Ref. [21–22].

2.4 Antibacterial assay

The antimicrobial activity of the complexes under study against Mycobacterium smegmatis and Candida albicans was tested in vitro using the method of twofold serial dilutions in liquid nutrient media described elsewhere [23]. In contrast to another test methods, the composition of these media provide favorable conditions for microbial strains growing and do not affect or destroy Ni(II) complexes during testing. It was determined as the lowest concentration (MIC, μmol·ml-1).

3. Results and Discussion

Potentiometric titration analysis shows that Ni(II) ions form stable complexes with both ortho- and meta-diphenol derivatives with general stability constants found to be $lg\beta = 15±18$. Based on elemental absorption, the spectroscopy composition of the compounds corresponds to general formula NiL\textsubscript{2}. Molar conductivity values ($\Lambda_{\alpha} \leq 80 \text{ cm}^2 \text{Ohm}^{-1} \text{mol}^{-1}$) point to the nonelectrolyte nature of investigated Ni(II) complexes [24]. According to the XRD data, all complexes are found to be amorphous with halo diffraction patterns in the 2θ range from 10° to 20°. Thermogravimetric analyses showed that NiL\textsubscript{2} complexes are stable up to 150°C. Their decomposition in the temperature range from 200° to 800°C is accompanied with ligand destruction and the formation of nickel(II) oxide as the final product. No peaks pointing to the presence of the solvent molecules in the coordination core were found. The composition and structure analysis of the coordination core done by means of IR, UV-vis and EPR spectroscopy was discussed in [21–22]. NiL\textsubscript{2} complexes with abovementioned diphenol derivatives have distorted square-planar geometry with two diphenol molecules in monoanionic form chelating to the central Ni(II) ion (Figure 1, 2).

Since one of the main requirements for antimicrobials is their ability to penetrate cellular walls and membranes, complexes’ lipophilicity should be considered when developing these bioactive compounds. It was found that the highest values of the n-octanol/water partition coefficient (lgP_{ow}) belong to Ni(II) complexes of meta-diphenols, containing piperidine (Ni(L\textsubscript{III})\textsubscript{2}), azepan (Ni(L\textsubscript{III})\textsubscript{2}) and morpholine (Ni(L\textsubscript{V})\textsubscript{2}) moiety. The complexes with ortho-diphenols Ni(L\textsubscript{II})\textsubscript{2}–Ni(L\textsubscript{II})\textsubscript{2} are characterized by lower lipophilicity parameters (lgP_{ow} = 2.9±3.3). The lessened lipophilicity (lgP_{ow} = 2.5±2.6) belongs to Ni(II) complexes of meta-diphenols, containing pyrrolidine (Ni(HL\textsubscript{III})\textsubscript{2}) and 4-methylpiperazine (Ni(L\textsubscript{V})\textsubscript{2}) moiety. The lipophilicity values of Ni(II) complexes suggest their potential ability for transmembrane transfer and are also important for the assessment of their bioavailability as well as their antimicrobial activity [25].

Figure 1. Structure of Ni(L\textsubscript{II})\textsubscript{2}–Ni(L\textsubscript{II})\textsubscript{2} complexes

Figure 2. Structure of Ni(L\textsubscript{V})\textsubscript{2}–Ni(L\textsubscript{V})\textsubscript{2} complexes

Redox processes involving the compounds under study can be reversible or irreversible. That is why the potential value for the first oxidation peak (E_{pa}, V) was taken as a criterion to compare the reducing ability of these compounds of the same type, and the more cathodic the value, the more active the compound as a reductant [26]. MIC values are given in μmol·ml-1 to
reveal a correlation between the antimicrobial activity and reducing ability of the compounds.

According to the voltammetry data, the co-location of substituents considerably affects the redox potential of investigated compounds. The peak potential values of complexes with ortho-diphenols are 0.55±0.63 V, what is in average 0.2 V lower, than those for meta-diphenols (E_{pa}=0.68–0.80 V). It might be concluded that complexes with ortho-diphenol derivatives have stronger reducing ability. This finding is in line with literature, where it was shown that ortho-diphenol compounds have higher activity in biochemical reactions, namely cytochrome c reduction in comparison with meta-diphenols due to their ability to form a thermodynamically stable quinone structure.

Antimicrobial assay shows that Ni(II) complexes possess a high and moderate level of bactericidal activity against Mycobacterium smegmatis and Candida albicans, comparable to those of some standard antibiotics (Table 1).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Mycobact. smegmatis</th>
<th>Candida albicans</th>
<th>lgP_{ow}</th>
<th>E_{pa}, V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(LII)\textsubscript{2}</td>
<td>0.054</td>
<td>0.054</td>
<td>3.2</td>
<td>0.60</td>
</tr>
<tr>
<td>Ni(LIII)\textsubscript{2}</td>
<td>0.051</td>
<td>0.051</td>
<td>2.9</td>
<td>0.55</td>
</tr>
<tr>
<td>Ni(LIV)\textsubscript{2}</td>
<td>0.052</td>
<td>0.052</td>
<td>3.3</td>
<td>0.63</td>
</tr>
<tr>
<td>Ni(LV)\textsubscript{2}</td>
<td>0.025</td>
<td>0.050</td>
<td>3.3</td>
<td>0.58</td>
</tr>
<tr>
<td>Ni(LVI)\textsubscript{2}</td>
<td>0.019</td>
<td>0.037</td>
<td>2.6</td>
<td>0.77</td>
</tr>
<tr>
<td>Ni(LVII)\textsubscript{2}</td>
<td>0.013</td>
<td>0.100</td>
<td>3.4</td>
<td>0.79</td>
</tr>
<tr>
<td>Ni(LVIII)\textsubscript{2}</td>
<td>0.004</td>
<td>0.138</td>
<td>3.5</td>
<td>0.76</td>
</tr>
<tr>
<td>Ni(LIX)\textsubscript{2}</td>
<td>0.004</td>
<td>0.004</td>
<td>3.4</td>
<td>0.68</td>
</tr>
<tr>
<td>Ni(LX)\textsubscript{2}</td>
<td>0.017</td>
<td>0.138</td>
<td>2.5</td>
<td>0.80</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>0.011</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>0.014</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>0.009</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nystatin</td>
<td>-</td>
<td>0.007</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphotericin B</td>
<td>-</td>
<td>0.003</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbinafine</td>
<td>-</td>
<td>0.043</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

As it is shown, complexes Ni(LI)=Ni(LII)\textsubscript{2} evince a moderate level of activity against both mycobacterial and fungi strains. Surprisingly, Ni(LII)=Ni(LIII)\textsubscript{2} complexes show a high activity against mycobacterial and a nonuniform activity against fungi. Ni(LIX)\textsubscript{2} complex with the strongest bactericidal action has the strongest reducing ability of 0.68 V from all the Ni(LI)=Ni(LII)\textsubscript{2} complexes. To explain these findings, it is important to notice that the redox potential is a thermodynamic criterion of an electrochemical reaction being possible, while the ability of redox-active compounds to interact with biomolecules of microorganisms has a more intricate dependence on the structure and physicochemical properties thereof.

According our previous finding [9], an acute toxicity of transition metal complexes with benzene derivatives is comparable to those of standard antibiotics ampicillin and streptomycin (LD_{50} = 1400–3400 mg/kg) [27].

4. CONCLUSION

According to the elemental analysis, TG/DTA and spectroscopic data, a general formula of the complexes is Ni\textsubscript{L\alpha} with ligands coordinated in a bidentate manner through O and N atoms with the formation of a distorted square-planar coordination core. Complexes are amorphous, water insoluble non-electrolyte (A_{mol} < 120 \Omega \cdot cm^{2} \cdot mol^{-1}) compounds, stable in water-organic media (general stability constant lgP_{ow} = 15±18). Lipophilicity parameters of both Ni(LII)\textsubscript{2} and Ni(LIV)\textsubscript{2} complexes suggest their potential ability for the transmembrane transfer. By means of the cyclic voltammetry method, redox properties of the complexes were evaluated. It was found that Ni(II) complexes with meta-diphenol derivatives have E_{pa} values on average 0.2 V higher than the complexes with ortho-diphenols. A complicated regularity between the antimicrobial activity and redox properties of complexes has been noticed. Our findings point to the conclusion that activity against pathogens depends not only on the thermodynamic possibility of redox process, but also on other physicochemical characteristics (in particular, lipophilicity) and structure peculiarities of compounds.

REFERENCES

15. В. А. Климова, Основные микрохимические орнаменты (органические соединения), 2-й изд., Москва, Россия: Химия, 1975, c. 224.
