Vol. 10, 2025
Radon and Thoron
THE RADON EYE MONITOR: A REVIEW OF BENEFITS AND PROBLEMS
Peter Bossew
Pages: 1-5
Abstract | References | Full Text (PDF)
-
P. Bossew, E. Benà, S. Chambers, M. Janik, “Analysis of outdoor and indoor
radon concentration time series recorded with RadonEye monitors,”Atmosphere,
vol. 15, no. 12, 1468, Dec. 2024.
DOI: 10.3390/atmos15121468 -
P. Bossew, “Performance of the RadonEye Monitor,” Atmosphere, vol.
16, no. 5, 525, May 2025.
DOI: 10.3390/atmos16050525 -
P. Bossew, “The RadonEye monitor - Benefits and problems,” presented at Int.
Conf. Radiat. Appl. (RAP 2025), Crete, Greece, May 2025.
Retrieved from: https://www.rap-conference.org/25/index.php?page=presentations
Retrieved on: Jun. 22, 2025 - P. Bossew, M. Janik, “Radon time series” in Book of Abstr. 17th Int. workshop on the Geological Aspects of Radon Risk Mapping (GARRM 2025), Prague, Czech Republic, 2025.
-
FTLAB Corp., Ansan, South Korea, 2001.
Retrieved from: http://radonftlab.com/
Retrieved on: Dec. 1, 2024 -
P. Warkentin, E. Curry, O. Michael, B. Bjorndal,
“A comparison of consumer-grade electronic
radon monitors,” J. Radiol. Prot., vol. 40, no. 4,
pp. 1258 – 1272, Dec. 2020.
DOI: 10.1088/1361-6498/ab96d6 -
K. Mitev et al., “Recent work with electronic radon detectors for continuous
Radon-222 monitoring,” JERA, vol. 3, 8844, Dec. 2022.
DOI: 10.35815/radon.v3.8844 -
J. P. Sá, P. T. B. S. Branco, M. C. M. Alvim-Ferraz,
F. G. Martins, S. I. V. Sousa, “Radon in Indoor Air: Towards Continuous
Monitoring,” Sustainability,
vol. 14, no. 3, 1529, Feb. 2022.
DOI: 10.3390/su14031529 -
T. Turtiainen, K. Mitev, R. Dehqanzada, O. Holmgren,
S. Georgiev, “Testing of thoron cross-interference of continuous radon
measuring instruments,” JERA, vol. 3, 7694, Mar. 2022.
DOI: 10.35815/radon.v3.7694 -
I. Dimitrova et al., “Study of the performance and time response of the
RadonEye Plus2 continuous radon monitor,” Measurement, vol. 207,
112409, Feb. 2023.
DOI: 10.1016/j.measurement.2022.112409 -
A. Bahadori, B. Hanson, “Evaluation of consumer digital radon measurement
devices: a comparative analysis,”
J. Radiol. Prot., vol. 44, no. 2, 021514, Jun. 2024.
DOI: 10.1088/1361-6498/ad4bf1 -
T. R. Beck, E. Foerster, M. Biel, S. Feige, “Measurement Performance of
Electronic Radon Monitors,” Atmosphere, vol. 15, no. 10, 1180, Oct.
2024.
DOI: 10.3390/atmos15101180 -
D. Rábago et al., “Investigation of the Performance of Various Low-Cost
Radon Monitors under Variable Environmental Conditions,” Sensors,
vol. 24, no. 6, 1836, Mar. 2024.
DOI: 10.3390/s24061836 -
J. F. Rey, N. Meisser, D. Licina, J. Goyette Pernot, “Performance evaluation
of radon active sensors and passive dosimeters at low and high radon
concentrations,” Build. Environ., vol. 250, 111154,
Feb. 2024.
DOI: 10.1016/j.buildenv.2023.111154 -
J. F. Rey, N. Meisser, D. Licina, J. Goyette Pernot, “Evaluating the impact
of indoor aerosols on the performance of real-time radon sensors,”
Front. Built Environ.
vol. 10, 1407499, May 2024.
DOI: 10.3389/fbuil.2024.1407499 -
S. D. Chambers et al., “Portable two-filter dual-flow-loop 222Rn detector:
stand-alone monitor and calibration transfer device,” ADGEO, vol.
57, pp. 63 – 80, May 2022.
DOI: 10.5194/adgeo-57-63-2022 - P. Bossew, J. Vaupotič, Approximate secondary calibration of RadonEye monitors. In preparation.
-
M. Baskaran, Radon: A Tracer for Geological, Geophysical and Geochemical Studies, 1st ed., Cham, Switzerland: Springer Cham, 2016.
DOI: 10.1007/978-3-319-21329-3 -
D. E. Tchorz-Trzeciakiewicz, M. Rysiukiewicz, “Ambient gamma dose rate as an
indicator of geogenic radon potential,” Sci. Total. Environ., vol.
755, part 1, 142771, Feb. 2021.
DOI: 10.1016/j.scitotenv.2020.142771
Biotechnology
STUDY OF CHARACTERISTICS OF PRIMULA VULGARIS USING RAMAN SPECTROSCOPY
Evi Llaka, Arjana Ylli, Ramadan Firanj, Eugena Dedushaj
Pages: 6-10
Abstract | References | Full Text (PDF)
-
S. Talreja, D. S. Tiwari, “A complete overview on Primula
vulgaris,” Int. J. Life Sci. Pharma Res., vol. 13, no. 6, pp.
277 – 286, Nov. 2023.
DOI: 10.22376/ijlpr.2023.13.6.P277-P286 -
H. Jacquemyn, P. Endels, R. Brys, M. Hermy,
S. R. J. Woodell, “Biological flora of the British Isles:
Primula vulgaris
Huds. ( P. acaulis (L.) Hill),” J. Ecol., vol. 97, no. 4, pp. 812 – 833, Jul. 2009.
DOI: 10.1111/j.1365-2745.2009.01513.x -
P. S. Colombo et al., “Phytochemistry of European Primula species,”
Phytochemistry, vol. 143, pp. 132 – 144, Nov. 2017.
DOI: 10.1016/j.phytochem.2017.07.005 -
M. T. Özkan et al., “Phenolic characterisation and antioxidant activity of
Primula vulgaris and its antigenotoxic effect on fibroblast cells,”
Jundishapur J. Nat. Pharm. Prod., vol. 12, no. 1, e40073, Nov.
2016.
DOI: 10.5812/jjnpp.40073 -
L. Li, J. Ye, H. Li, Q. Shi, “Characterization of metabolites and
transcripts involved in flower pigmentation in Primula vulgaris,”
Front. Plant Sci., vol. 11, 572517, Nov. 2020.
DOI: 10.3389/fpls.2020.572517
PMCid: PMC7714730 -
A. Majid et al., “In vitro approaches of Primula vulgaris leaves
and roots extraction against human pathogenic bacterial strains,”
World Appl. Sci. J.
, vol. 30, no. 5, pp. 575 – 580, Feb. 2014.
DOI: 10.5829/idosi.wasj.2014.30.05.82264 -
I. Kurt-Celep et al., “From small-scale studies to an encompassing view:
Inhibiting inflammation and clinically relevant enzymes with various
extracts of Primula vulgaris using in vitro and
in silico
techniques,” Food Front., vol. 6, no. 1, pp. 329 – 359, Jan. 2025.
DOI: 10.1002/fft2.473 -
S. Demir, I. Turan, R. Aliyazicioglu, S. O. Yaman, Y. Aliyazicioglu, “
Primula vulgaris
extract induces cell cycle arrest and apoptosis in human cervix cancer
cells,” J. Pharm. Anal., vol. 8, no. 5, pp. 307 – 311, Oct. 2018.
DOI: 10.1016/j.jpha.2018.05.003
PMid: 30345144
PMCid: PMC6190528 -
O. Oluwole, W. B. Fernando, J. Lumanlan,
O. Ademuyiwa, V. Jayasena, “Role of phenolic acid, tannins, stilbenes,
lignans and flavonoids in human health – a review,”
Int. J. Food Sci. Technol
., vol. 57, no. 10, pp. 6326 – 6335, Oct. 2022.
DOI: 10.1111/ijfs.15936 -
M. Park, A. Somborn, D. Schlehuber, V. Keuter,
G. Deerberg, “Raman spectroscopy in crop quality assessment: focusing on
sensing secondary metabolites: a review,” Hortic. Res.,vol. 10, no.
5, Apr. 2023.
DOI: 10.1093/hr/uhad074
PMid: 37249949
PMCid: PMC10208899 -
M. Krysa, M. Szymanska-Chargot, A. Zdunek, “FT-IR and FT-Raman fingerprints
of flavonoids – A review,” Food Chem., vol. 393, 133430, Nov. 2022.
DOI: 10.1016/j.foodchem.2022.133430
PMid: 35696953 -
A. Noroozisharaf, H. Samizadeh Lahiji, A. Hatamzadeh, D. Bakhshi,
“Phytochemical attributes of endemic endangered primrose (Primula
heterochroma Stapf.) accessions grown in Iran,”
Physiol. Mol. Biol. Plants
, vol. 21, no. 4, pp. 573 – 581, Oct. 2015
DOI: 10.1007/s12298-015-0328-9
PMid: 26600683
PMCid: PMC4646863 -
I. Stefanis, P. Chatzopoulou, N. Krigas, A. Karioti, “Exploring the Chemical
Content of Primula veris L. subsp. veris Wild-Growing
Populations along a Climate Gradient: An HPLC-PDA-MS Quality Assessment of
Flowers, Leaves and Roots for Sustainable Exploitation,”
Horticulturae
, vol. 9, no. 10, 1120, Oct. 2023.
DOI: 10.3390/horticulturae9101120 -
T. Teslova et al., “Raman and Surface Enhanced Raman Spectra of Flavone and
Several Hydroxy- Derivatives,”
J. Raman Spectrosc., vol. 38, no. 7, pp. 802 – 818, Jul. 2007.
DOI: 10.1002/jrs.1695 -
C. A. Dehelean et al., “Rutin bioconjugates as potential nutraceutical
prodrugs: An in vitro and in ovo toxicological screening,”
Front. Pharmacol., vol. 13, 1000608, Sep. 2022.
DOI: 10.3389/fphar.2022.1000608
PMid: 36210849
PMCid: PMC9538480 -
H. Peng, H. Y. Hou, X. B. Chen, “DFT calculation and Raman spectroscopy
studies of α-linolenic acid,” Quim. Nova, vol. 44, no. 8, pp. 929 –
935, Apr. 2021.
DOI: 10.21577/0100-4042.20170749 -
A. Espina, S. Sanchez-Cortes, Z. Jurašeková, “Vibrational Study (Raman,
SERS, and IR) of Plant Gallnut Polyphenols Related to the Fabrication of
Iron Gall Inks,” Molecules, vol. 27, no. 1, 279, Jan. 2022.
DOI: 10.3390/molecules27010279
PMid: 35011511
PMCid: PMC8746386 -
Y. Fan, Sh. Li, D. P. Xu, “Raman spectra of oleic acid and linoleic acid,”
Guang Pu Xue Yu Guang Pu Fen Xi, vol. 33, no. 12, pp. 3240 – 3243,
Dec. 2013.
DOI: 10.3964/j.issn.1000-0593(2013)12-3240-04
PMid: 24611378 -
P. J. Larkin,
Infrared and Raman Spectroscopy: Principles and Spectral Interpretation
, 2 nd ed., Amsterdam, Netherlands: Elsevier, 2017.
DOI: 10.1016/C2010-0-68479-3 - G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd ed., Chichester, UK: J. Wiley and Sons, 2001.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds , 6th ed., Hoboken (NJ), USA: J. Wiley and Sons, 2009.
-
M. Caser, C. Lovisolo, V. Scariot, “The influence of water stress on growth,
ecophysiology and ornamental quality of potted Primula vulgaris
‘Heidy’ plants: New insights to increase water use efficiency in plant
production,” Plant Growth Regul.,vol. 83, no. 3, pp. 361 – 373,
Dec. 2017.
DOI: 10.1007/s10725-017-0301-4 -
S. Gunawardana, C. Gunasekara, N. M. S. Sirimuthu, “Raman Spectroscopy in
Phytochemical Analysis,” Sri Lankan J. Appl. Sci., vol. 1, no. 1,
pp. 1 – 10, Aug. 2022.
Retrieved from: https://sljoas.uwu.ac.lk/index.php/sljoas/article/view/24
Retrieved on: Jul. 28, 2025
Radon and Thoron
INDOOR RADON SURVEY IN TIRANA CITY, ALBANIA
Blerim Rrakaqi, Gerti Xhixha, Kozeta Tushe, Merita Xhixha (Kaçeli), Njomza Elezaj, Ylli Kaçiu, Nazim Gashi
Pages: 11-15
Abstract | References | Full Text (PDF)
-
Sources, Effects and Risks of Ionizing Radiation, UNSCEAR 2019
Report to the General Assembly with Scientific Annexes, UNSCEAR, New York
(NY), USA, 2020.
Retrieved from: https://www.unscear.org/unscear/uploads/documents/publications/UNSCEAR_2019_Annex-A-CORR.pdf
Retrieved on: Aug. 20, 2025 -
A Citizen’s guide to radon: the guide to protecting yourself and your
family from radon
, EPA402/K-12/002, US Environmental Protection Agency, Washington D.C., USA,
2002.
Retrieved from: https://www.epa.gov/sites/default/files/2016-12/documents/2016_a_citizens_guide_to_radon.pdf
Retrieved on: Aug. 20, 2025 -
Radon, NIEHS, Research Triangle Park (NC), USA, 2025.
Retrieved from: https://www.niehs.nih.gov/health/topics/agents/radon
Retrieved on: Aug. 20, 2025 -
Frequently asked questions, University of Georgia, Athens (GA),
USA.
Retrieved from: https://radon.uga.edu/information/frequently-asked-questions
Retrieved on: Aug. 24, 2025 -
Radon, VDH, Richmond (VA), USA.
Retrieved from: https://www.vdh.virginia.gov/environmental-public-health-tracking/radon
Retrieved on: Aug. 25, 2025 -
Radon: What you need to know, Health Canada, Ottawa, Canada.
Retrieved from: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/radon-what-you-need-to-know.html
Retrieved on: Aug. 25, 2025 -
S. Knapp, J. Athey, A. Nash Jr, Mitigating radon levels at home
(Information Circular 90), Alaska Department of Natural Resources,
DGGS, Anchorage (AK), USA, 2020.
Retrieved from: https://dggs.alaska.gov/webpubs/dggs/ic/text/ic090.pdf
Retrieved on: Aug. 25, 2025 -
WHO handbook on indoor radon: a public health perspective, WHO,
Geneva, Switzerland, 2009.
Retrieved from: https://www.who.int/publications/i/item/9789241547673
Retrieved on: Aug. 29, 2025 -
K. Bode et al., “Indoor radon concentration related to geological areas at
different workplaces of Albania,” in
Proc. 6th Int. Conf. Radiat. Appl. Var. Fields of Res. (RAD 2018), Ohrid, Macedonia, 2018, pp. 111 – 114.
DOI: 10.21175/RadProc.2018.24 -
K. Tushe, E. Bylyku, D. Prifti, B. Daci, “Study on Indoor Radon Measurements
with Passive Method in Schools and Workplaces in Tirana City,” presented at
the
9th Int. Symp. Naturally Occurring Radioactive Material (NORMIX 2019)
, Denver (CO), USA, Sep. 2019.
Retrieved from: https://nucleus.iaea.org/sites/orpnet/resources/Shared%20Documents/Tushe-Indoor-Radon-in-Tirana-City.pdf
Retrieved on: Sep. 05, 2025 -
K. B. Tushe et al., “First step toward the geographical distribution of
indoor radon in dwellings in
Albania,” Radiat. Prot. Dosimetry, vol. 172, no. 4,
pp. 488 – 495, Dec. 2016.
DOI: 10.1093/rpd/ncv494
PMid: 26656073 -
G. Xhixha et al., “Lessons Learned from the 2022 Campaign of the Measurement
of Indoor Radon Concentration in Dwellings in Albania,” in
Proc. Int. Conf. Radiat. Appl. (RAP 2024)
, Granada, Spain, 2024, pp. 53 – 56.
DOI: 10.37392/RapProc.2024.12 -
Qeveria e Shqipërisë. (Nëntor 25, 2015).
Vendim nr. 957 për miratimin e rregullores “Për nivelet e lejuara të
përqendrimit të radonit në ndërtesa dhe në ujë, nivelet drejtuese të
radionuklideve në materialet e ndërtimit, si dhe nivelet e lejuara të
radionuklideve në produktet ushqimore dhe kozmetike”
.
(Government of Albania. (Nov. 25, 2015). Decision no. 957 on the approval of the regulation “On the permitted levels of radon concentration in buildings and water, the guiding levels of radionuclides in building materials, as well as the permitted levels of radionuclides in food and cosmetic products” .)
Retrieved from: https://www.ishp.gov.al/wp-content/uploads/2019/04/Rr.Nr_.957-date-25.11.2015-Per-nivelet-udhezuese-te-perqendrimit-te-radonit.pdf
Retrieved on: Sep. 15, 2025 -
The Council of European Union. (Dec. 5, 2013). Council Directive
2013/59/Euratom (consolidated in 2022) laying down basic safety standards
for protection against the dangers arising from exposure to ionising
radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom,
96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF
Retrieved on: Sep. 20, 2025 -
Z. Daraktchieva, J. C. H. Miles, N. McColl, “Radon, the lognormal
distribution and deviation from it,”
J. Radiol. Prot., vol. 34, no. 1, pp. 183 – 190,
Mar. 2014.
DOI: 10.1088/0952-4746/34/1/183
PMid: 24441867 -
N. Elezaj, B. Zorko, G. Xhixha, V. Bytyqi, “Radon activity concentrations
and radiological exposure assessment in drinking water in Prizren
Region–Kosovo,” Int. J. Environ. Anal. Chem., vol. 105, no. 8, pp.
1764 – 1778, 2025.
DOI: 10.1080/03067319.2023.2298719 -
N. Elezaj et al., “Temporal variation of radon in soil and water in Kosovo,”
Radiochim. Acta, vol. 113, no. 6, pp. 471 – 483, May 2025.
DOI: 10.1515/ract-2024-0350 -
The European Commission. (Feb. 2, 2024).
Commission Recommendation (Eu) 2024/440 on the use of dose coefficients
for the estimation of the effective dose and equivalent dose for the
purposes of Council Directive 2013/59/Euratom.
Retrieved from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202400440
Retrieved on: Sep. 25, 2025
Radiation Measurements
OPTIMAL GEOMETRIC DESIGN OF THE DIAPHRAGM OF A FREE-AIR IONIZATION CHAMBER FOR LOW-ENERGY X-RAYS
Jessica Gschweng, Stefan Pojtinger
Pages: 16-20
Abstract | References | Full Text (PDF)
- Fundamental Quantities and Units for Ionizing Radiation (Revised), Rep. 85, ICRU, Bethesda (MD), USA, 2011.
-
H. A. B. Simons, “The Calculation of Gamma Ray Penetration of the Walls of
Cylindrical and Conical Collimating Holes,” Phys. Med. Biol., vol.
6, no. 4, pp. 561 – 576, Apr. 1962.
DOI: 10.1088/0031-9155/6/4/305
PMid: 13913179 -
M. Boutillon, W. H. Henry, P. J. Lamperti, “Comparison of Exposure Standards
in the 10–50 kV X-Ray Region,” Metrologia, vol. 5, no. 1, pp. 1 –
10, Jan. 1969.
DOI: 10.1088/0026-1394/5/1/002 -
A. C. McEwan, “Corrections for scattered photons in free-air ionisation
chambers,” Phys. Med. Biol., vol. 27, no. 3, pp. 375 – 386, Mar.
1982.
DOI: 10.1088/0031-9155/27/3/004
PMid: 7071149 -
D. T. Burns, L. Büermann, “Free-air ionization chambers,”
Metrologia, vol. 46, no. 2, pp. S9 – S23, Apr. 2009.
DOI: 10.1088/0026-1394/46/2/S02 -
D. T. Burns, C. Kessler, “Diaphragm correction factors for free-air chamber
standards for air kerma in x-rays,” Phys. Med. Biol., vol. 54, no.
9, pp. 2737 – 2745, May 2009.
DOI: 10.1088/0031-9155/54/9/009
PMid: 19351980 -
T. Kurosawa, N. Takata, N. Saito, “Effect of the diaphragm of free-air
ionisation chamber for X-ray air-kerma measurements,”
Radiat. Prot. Dosim., vol. 146, no. 1 – 3, pp. 195 – 197, Jul. 2011.
DOI: 10.1093/rpd/ncr146
PMid: 21498414 -
J. Gschweng, S. Pojtinger, “Free-air ionization chambers for the measurement
of air kerma in low-energy x-rays – optimum air path length and the
limitations of averaging monoenergetic correction factors,”
Metrologia, vol. 62, no. 2, 025013, Apr. 2025.
DOI: 10.1088/1681-7575/adc39d -
I. Kawrakow, D. W. O. Rogers,
The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon
Transport, Rep. PIRS-701, NRCC, Ottawa, Canada, 2000.
Retrieved from: https://nrc-cnrc.github.io/EGSnrc/doc/pirs701-egsnrc.pdf
Retrieved on: Apr. 04, 2025 -
E. Mainegra-Hing, N. Reynaert, I. Kawrakow, “Novel approach for the Monte
Carlo calculation of free-air chamber correction factors,”
Med. Phys., vol. 35, no. 8, pp. 3650 – 3660, Aug. 2008.
DOI: 10.1118/1.2955551
PMid: 18777925 -
I. Sechopoulos et al., “RECORDS: improved Reporting of montE CarlO RaDiation
transport Studies: Report of the AAPM Research Committee Task Group 268,”
Med. Phys., vol. 45, no. 1, pp. e1 – e5, Jan. 2018.
DOI: 10.1002/mp.12702
PMid: 29178605 -
I. Kawrakow, M. Fippel, “Investigation of variance reduction techniques for
Monte Carlo photon dose calculation using XVMC,” Phys. Med. Biol.,
vol. 45, no. 8, pp. 2163 – 2183, Aug. 2000.
DOI: 10.1088/0031-9155/45/8/308
PMid: 10958187 -
L. Büermann, The PTB free-air ionization chambers,
Physikalisch-Technische Bundesanstalt, Braunschweig, Germany, 2021.
DOI: 10.7795/120.20220324 -
C. Kessler, D. T. Burns, P. Roger,
Establishment of reference radiation qualities for mammography, Rep. 2010/01, BIPM, Paris, France, 2010.
Retrieved from: https://www.bipm.org/documents/20126/27085544/bipm+publication-ID-2090.pdf/246a5298-8b17-cbb1-bd96-38da3bc7da2a?version=1.3&download=false
Retrieved on: Apr. 04, 2025
Medical Physics
EXAMINING LESION VISIBILITY OF THICK COMPRESSED BREASTS UNDER DIFFERENT IONIZING RADIATION EXPOSURE CONDITIONS BY USING A MAMMOGRAPHIC MATHEMATICAL PHANTOM
Spyridoula Katsanevaki, Nektarios Kalyvas, Christos Michail, Ioannis Valais, George Fountos, Ioannis Kandarakis
Pages: 21-27
Abstract | References | Full Text (PDF)
-
W. Ren, M. Chen, Y. Qiao, F. Zhao. “Global guidelines for breast cancer
screening: A systematic review,” Breast, vol. 64, pp. 85 –
99, Aug. 2022.
DOI: 10.1016/j.breast.2022.04.003
PMid: 35636342
PMCid: PMC9142711 -
H. Aichinger, J. Dierker, S. Joite-Barfuß, M. Säbel, “Principles of X-Ray
Imaging,” in
Radiation Exposure and Image Quality in X-ray Diagnostic Radiology:
Physical Principles and Clinical Applications, 2nd ed., Berlin Heidelberg, Germany: Springer-Verlag, 2012, ch. 1, pp. 3 – 7.
DOI: 10.1007/978-3-642-11241-6_1 -
K. Bliznakova “The advent of anthropomorphic three-dimensional breast
phantoms for X-ray imaging,” Phys. Med., vol. 79, pp. 145 – 161,
Nov. 2020.
DOI: 10.1016/j.ejmp.2020.11.025
PMid: 33321469 -
N. Kalyvas et al., “A Novel Method to Model Image Creation Based on
Mammographic Sensors Performance Parameters: A Theoretical Study,”
Sensors, vol. 23, no. 4, 2335, Feb. 2023.
DOI: 10.3390/s23042335
PMid: 36850937
PMCid: PMC9968010 -
A. C. Konstantinidis, M. B. Szafraniec, R. D. Speller, A. Olivo “The Dexela
2923 CMOS X-ray detector: A flat panel detector based on CMOS active pixel
sensors for medical imaging applications,”
Nucl. Instrum. Methods in Phys. Res. Sec. A, vol. 689, pp. 12 – 21, Oct. 2012.
DOI: 10.1016/j.nima.2012.06.024 -
MATLAB version 9.12, MathWorks, Natick (MA), USA, 2022.
Retrieved from: https://www.mathworks.com
Retrieved on: Jun. 30, 2025 -
R. Nowotny, XMuDat: Photon attenuation data on PC version 1.0.1,
IAEA Nuclear Data Section, Vienna, Austria, 1998.
Retrieved from: https://www-nds.iaea.org/publications/iaea-nds/iaea-nds-0195.htm
Retrieved on: Jun. 30, 2025 -
S. Katsanevaki, “Mathematical creation of a phantom to study the effect of
exposure on mammography,” Diploma Thesis, University of West Attica, Athens,
Greece, 2024.
DOI: 10.26265/polynoe-5930 -
W. Rasband, ImageJ version 1.47h, National Institutes of Health,
Bethesda (MD), USA, 2012.
Retrieved from: https://imagej.net/ij/
Retrieved on: Jun. 30, 2025 -
F. Stossi, P. K. Singh, “Basic Image Analysis and Manipulation in
ImageJ/Fiji,” Curr. Protoc., vol. 3, no. 7, e849, Jul. 2023.
DOI: 10.1002/cpz1.849
PMid: 37498127









