Vol. 8, 2023
Medical Physics
TOWARDS THE IMPLEMENTATION OF A PHANTOM FOR THE LOW CONTRAST EVALUATION OF ELECTRONIC PORTAL IMAGING DETECTORS (EPID): A THEORETICAL STUDY
Nektarios Kalyvas, Marios K. Tzomakas, Vasiliki Peppa, Antigoni Alexiou, Georgios Karakatsanis, Anastasios Episkopakis, Christos Michail, Ioannis Valais, George Fountos, Ioannis S. Kandarakis
Pages: 1-4
DOI: 10.37392/RapProc.2023.01
Abstract | References | Full Text (PDF)
Electronic Portal Imaging Systems (EPIDs) are used in Radiotherapy
treatment as part of the patient positioning verification check and for
portal dosimetry purposes. The quality control of the imaging performance
of an EPID is performed with dedicated phantoms. In this work, an
examination through Monte Carlo (MC) simulation is presented in order to
determine an appropriate step wedge phantom configuration for measuring low
contrast differences in EPIDs. The PENELOPE based MC software package
PenEasy was used. A simple geometry of a narrow cone beam with a cross
section of 0.00053 cm2 at 100 cm distance was assumed. A 2 MeV beam was considered to impinge on a
4 cm water equivalent phantom in conjunction with a metal sheet of Pb, Al,
Fe or W positioned at 80 cm distance. At 100 cm distance a Gd2O2S:Tb
scintillator, as part of an EPID responsible for detecting X-rays was
assumed. The Gd2O2S:Tb thicknesses considered were 0.02cm and 0.03 cm. All
the metal thicknesses were allowed to range from 0.1 cm to 1.5 cm per 0.1 cm
step. The optical photons escaping to the Gd2O2S:Tb output were calculated
by an analytical formula for each metal thickness. Hence, if a wedge
metallic pattern from 0.1 cm to 1.5 cm is assumed to be constructed, then
the optical photon output originating from each step, as well as the signal
contrast between two steps would be known. It was found that a combination
of Pb, Fe and W materials can be used for a step wedge phantom design.
- S. -H. Baek et al., “Clinical Efficacy of an Electronic Portal Imaging Device versus a Physical Phantom Tool for Patient-Specific Quality Assurance,” Life, vol. 12, no. 11, 1923, Nov. 2022.
DOI: 10.3390/life12111923
PMid: 36431058
PMCid: PMC9694583 - L. E. Antonuk, “Electronic portal imaging devices: a review and historical perspective of contemporary technologies and research,” Phys. Med. Biol. , vol. 47, no. 6, pp. R31 – R65, Mar. 2002.
DOI: 10.1088/0031-9155/47/6/201
PMid: 11936185 - C. K. McGarry, M. W. D. Grattan, V. P. Cosgrove, “Optimization of image quality and dose for Varian aS500 electronic portal imaging (EPIDs),” Phys. Med. Biol. , vol. 52, no. 23, pp. 6865 – 6877, Dec. 2007.
DOI: 10.1088/0031-9155/52/23/006
PMid: 18029980 - A. Mans et al., “3D Dosimetric verification of volumetric-modulated arc therapy by portal dosimetry,” Radiother. Oncol., vol. 94, no. 2, pp. 181 – 187, Feb. 2010.
DOI: 10.1016/j.radonc.2009.12.020
PMid: 20089323 - K. Ślosarek et al., “Portal dosimetry in radiotherapy repeatability evaluation,” J. Appl. Clin. Med. Phys., vol. 22, no. 1, pp. 156 – 164, Jan. 2021.
DOI: 10.1002/acm2.13123
PMid: 33314643
PMCid: PMC7856497 - W. van Elmpt et al., “A literature review of electronic portal imaging for radiotherapy dosimetry,” Radiother. Oncol., vol. 88, no. 3, pp. 289 – 309, Sep. 2008.
DOI: 10.1016/j.radonc.2008.07.008
PMid: 18706727 - L. C. G. G, Persoon et al., “Interfractional trend analysis of dose differences based on 2D transit portal dosimetry,” Phys. Med. Biol., vol. 57, no. 20, pp. 6445 – 6458, Oct. 2012.
DOI: 10.1088/0031-9155/57/20/6445
PMid: 23001452 - I. Olaciregui-Ruiz, R. Rozendaal, B. Mijnheer, M. van Herk, A. Mans, “Automated in vivo portal dosimetry of all treatments,” Phys. Med. Biol. , vol. 58, no. 22, pp. 8253 – 8264, Nov. 2013.
DOI: 10.1088/0031-9155/58/22/8253
PMid: 24201085 - F. Cremers et al., “Performance of electronic portal imaging devices (EPIDs) used in radiotherapy: image quality and dose measurements,” Med. Phys. , vol. 31, no. 5, pp. 985 – 996, May 2004.
DOI: 10.1118/1.1688212
PMid: 15191282 - S. Y. Son et al., “Evaluation of image quality for various electronic portal imaging devices in radiation therapy,” J. Radiol. Sci. Technol. , vol. 38, no. 4, pp. 451 – 461, Dec. 2015.
DOI: 10.17946/JRST.2015.38.4.16 - B. K. Rout, M. C. Shekar, A. Kumar, K. K. D. Ramesh, “Quality control test for electronic portal imaging device using QC-3 phantom with PIPSpro,” Int. J. Cancer Ther. Oncol., vol. 2, no. 4, 02049, Sep. 2014.
DOI: 10.14319/ijcto.0204.9 - I. J. Das et al., “A quality assurance phantom for electronic portal imaging devices,” J. Appl. Clin. Med. Phys., vol. 12, no. 2, pp. 391 – 403, Feb. 2011.
DOI: 10.1120/jacmp.v12i2.3350
PMid: 21587179
PMCid: PMC5718680 - I. J. Das, F. Salvat, PENELOPE: a Code system for Monte Carlo simulation of electron and photon transport , OECD Nuclear Energy Agency, Issy-les-Moulineaux, France, 2015.
Retrieved from: https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/nsc-doc2015-3.pdf
Retrieved on: Jun. 12, 2023 - J. Sempau, E. Acosta, J. Baro, J. M. Fernández-Varea, F. Salvat, “An algorithm for Monte Carlo simulation of coupled electron-photon transport,” Nucl. Instrum. Methods Phys. Res. B, vol. 132, no. 3, pp. 377 – 390, Nov. 1997.
DOI: 10.1016/S0168-583X(97)00414-X - J. Baro, J. Sempau, J. M. Fernández-Varea, F. Salvat, “PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter,” Nucl. Instrum. Methods Phys. Res. B , vol. 100, no. 1, pp. 31 – 46, May 1995.
DOI: 10.1016/0168-583X(95)00349-5 - C. M. Michail et al., “Experimental and theoretical evaluation of a high resolution CMOS based Detector under X-ray imaging conditions,” IEEE Trans. Nucl. Sci. , vol. 58, no. 1, pp. 314 – 322, Feb. 2011.
DOI: 10.1109/TNS.2010.2094206 - J. Sempau, A. Badal, L. Brualla, “A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields,” Med. Phys., vol. 38, no. 11, pp. 5887 – 5895, Nov. 2011.
DOI: 10.1118/1.3643029
PMid: 22047353 - I. Kandarakis, D. Cavouras, G. S. Panayiotakis, C. D. Nomicos, “Evaluating x-ray detectors for radiographic applications: a comparison of ZnSCdS:Ag with Gd2O2S:Tb and Y2O2S:Tb screens,” Phys. Med. Biol., vol. 42, no. 7, pp. 1351 – 1373, Jul. 1997.
DOI: 10.1088/0031-9155/42/7/009
PMid: 9253044 - N. Kalyvas, P. Liaparinos, “Analytical and Monte Carlo comparisons on the optical transport mechanisms of powder phosphors,” Opt. Mater., vol. 88, pp. 396 – 405, Feb. 2019.
DOI: 10.1016/j.optmat.2018.12.006 - NIST Physical Measurement Laboratory Elemental Data Index: X-ray Form Factor, Attenuation and Scattering Tables , NIST, Gaithersburg (MD), USA.
Retrieved from: https://physics.nist.gov/PhysRefData/Elements/index.html
Retrieved on: Jun. 15, 2023 - D. Parsons, J. L. Robar, “The effect of copper conversion plates on low Z target image quality,” Med. Phys.,vol. 39, no. 9, pp. 5362 – 5371, Sep. 2012
DOI: 10.1118/1.4742052
PMid: 22957604 - A. Kosunen, D. W. Rogers, “Beam quality specification for photon beam dosimetry,” Med. Phys.,vol. 20, no. 4, pp. 1181 – 1188, Jul. 1993.
DOI: 10.1118/1.597150
PMid: 8413028