Vol. 7, 2022

Some full papers presented at RAP 2022 conference are published in the:

• Special issue of The European Physics Journal Special Topics – link will be posted after the publication is available online

• Special issue of Journal of the European Radon Associationhttps://radonjournal.net/index.php/radon/issue/view/528

Radiation Physics


S. Zolotov, U. Bliznyuk, F. Studeninkin, A. Belousov

Pages: 1-3

DOI: 10.37392/RapProc.2022.01

The study confirms the impact of aluminum plates added in 5-10 MeV electron irradiation method on dose uniformity of a spherical object. It was found that the maximum dose uniformity throughout a spherical volume can be achieved in computer simulation by varying the initial electron energy from 5 to 10 MeV and modifying the thickness of aluminum plate from 3 to 5 mm.
  1. T. Kume, S. Todoriki, “Food Irradiation in Asia, the European Union and the United States: A Status Update,” Radioisotopes, vol. 62, no. 5, pp. 291 – 299, May 2013.
    DOI: 10.3769/radioisotopes.62.291
  2. А. С. Алимов, “Практическое применение электронных ускорителей,” Препринт НИИЯФ МГУ но. 2011-13/877, 2011.
    (A. S. Alimov, “Practical application of electron accelerators,” Preprint MSU SINP no. 2011-13/877, 2011.)
    Retrieved from: http://www.sinp.msu.ru/ru/preprint/8277
    Retrieved on: May 10, 2021
  3. Statement Summarizing the Conclusions and Recommendations from the Opinions on the Safety of Irradiation of Food adopted by the BIOHAZ and CEF Panels , vol. 9, no. 4, EFSA, Parma, Italy, 2011.
    DOI: 10.2903/j.efsa.2011.2107
  4. Н. Н. Исамов и др., “Применение радиационных технологий для обеспечения безопасности продуктов животного происхождения,” Все о мясе, но. 1, стр. 11 – 15, 2017.
    (N. N. Isamov et al., “Using radiation technologies to provide safety of foods of animal origin,” All about meat, no. 1, pp. 11 – 15, 2017.)
  5. А. Н. Павлов и др., “Технологический процесс радиационной обработки пищевой продукции и дозиметрическое обеспечение,” Радиационная гигиена, том 13, но. 4, стр. 40 – 50, Декабрь 2020.
    (A. N. Pavlov et al., “Technological process of food irradiation and dosimetric support,” Radiat. Hyg., vol. 13, no. 4, pp. 40 – 50, Dec. 2020.)
    DOI: 10.21514/1998-426X-2020-13-4-40-50
  6. U. A. Bliznyuk et al., “Computer simulation to determine food irradiation dose levels,” IOP Conf. Ser.: Earth Environ. Sci ., vol. 365, 012002, 2019.
    DOI: 10.1088/1755-1315/365/1/012002
  7. R. B. Miller, Electronic Irradiation of Foods: An Introduction to the Technology , 1st ed., New York (NY), USA: Springer, 2005.
    DOI: 10.1007/0-387-28386-2



Jelena Ajtić, Branislava M. Mitrović

Pages: 4-6

DOI: 10.37392/RapProc.2022.02

Due to their therapeutic and pharmacologic properties, medicinal herbs have a long history of use around the world. The objective of this study is to determine the activity concentration of natural (40K, 226Ra, 232Th, and 238U) and artificial (137Cs) radionuclides in samples of herbal teas from Serbia. The samples of the following commercially available teas: dandelion leaf (Taraxaci folium), mulberry leaf (Mori nigrae folium), ground ivy (Glechoma hederacea), sweet wormwood (Artemisia annua), rose hip (Cynosbati fructus), wall germander (Teucrium chamaedrys), and thyme (Thymus vulgaris), were collected in Serbia in 2021. The radionuclides’ activity concentrations were determined using gamma spectrometry. The results show that among the natural radionuclides, 40K is dominant (320–1600 Bq/kg), while the activity concentration of 226Ra and 232Th ranges from below the minimum detectable activity (MDA) to 12 Bq/kg, and below the MDA to 13 Bq/kg, respectively. In all investigated samples, the 238U activity concentration is below the MDA. Cesium-137 is detected in five out of seven analysed samples (MDA–2.9 Bq/kg). The results indicate that 137Cs, released into the atmosphere after the Chernobyl accident in 1986, is still present in the environment of Serbia. Nevertheless, according to the Serbian legislation regulating the maximum permitted levels of radionuclides in foodstuffs, all of the investigated samples of herbal teas are safe for human consumption.
  1. L. Tettey-Larbi, E. O. Darko, C. Schandorf, A. A. Appiah, “Natural radioactivity levels of some medicinal plants commonly used in Ghana,” Springerplus, vol. 2, no. 1, 157, Apr. 2013.
    DOI: 10.1186/2193-1801-2-157
    PMid: 23641323
    PMCid: PMC3639363
  2. F. K. Görür, R. Keser, N. Akçay, S. Dizman, N. T. Okumuşoğlu, “Radionuclides and heavy metals concentrations in Turkish market tea,” Food Control, vol. 22, no. 12, pp. 2065 – 2070, Dec. 2011.
    DOI: 10.1016/j.foodcont.2011.06.005
  3. Ö. Kiliç, M. Belivermiş, S. Topcuoğlu, Y. Çotuk “232Th, 238U, 40K, 137Cs radioactivity concentrations and 137Cs dose rate in Turkish market tea,” Radiat. Eff. Defects Solids, vol. 164, no. 2, pp. 138 – 143, Feb. 2009.
    DOI: 10.1080/10420150802681530
  4. L. Petrović, “Nuklearna havarija u Černobilu 1986. godine: Prilog istraživanju ekoloških problema 20. veka,” Istorija 20. veka, tom 28, br. 2, str. 101 – 116, 2010.
    (L. Petrović, “Nuclear incident in Chernobyl 1986: An addition to the research of the environmental problems of the 20th century,” History of the 20th Century, vol. 28, no. 2, pp. 101 – 116, 2010.)
  5. G. Vitorović i dr., “Radioaktivnost mleka u Srbiji od Černobilja 1986. do Fukušime 2011. godine,” Veterinarski Glasnik, tom 67, br. 3 – 4, str. 237 – 244, 2013.
    (G. Vitorović et al., “Milk radioactivity in Serbia from Chernobyl nuclear disaster in 1986 to Fukushima accident in 2011,” Vet. Gaz., vol. 67, no. 3 – 4, pp. 237 – 244, 2013.)
    DOI: 10.2298/VETGL1304237V
  6. M. Greger, Uptake of nuclides by plants, Rep. TR-04-14, Stockholm University, Stockholm, Sweden, 2004.
    Retrieved from: https://skb.se/upload/publications/pdf/TR-04-14.pdf
    Retrieved on: Sep. 18, 2021
  7. I. Kandić, A. Kandić, I. Čeliković, M. Gavrilović, P. Janaćković, “Activity concentrations of 137Cs, 40 K, and 210Pb radionuclides in selected medicinal herbs from Central Serbia and their effective dose due to ingestion,” Sci. Total Environ., vol. 701, 134554, Jan. 2020.
    DOI: 10.1016/j.scitotenv.2019.134554
    PMid: 31753500
  8. A. Y. Ahmad, M. A. Al-Ghouti, I. AlSadig, M. Abu-Dieyeh, “Vertical distribution and radiological risk assessment of 137Cs and natural radionuclides in soil samples,” Sci. Rep., vol. 9, no. 1, 12196, Aug. 2019.
    DOI: 10.1038/s41598-019-48500-x
    PMid: 31434929
    PMCid: PMC6704082
  9. A. M. Abd El-Aty et al., “Residues and contaminants in tea and tea infusions: a review,” Food Addit. Contam. Part A, Chem. Anal. Control Expo. Risk Assess., vol. 31, no. 11, pp. 1794 – 1804, 2014.
    DOI: 10.1080/19440049.2014.958575
    PMid: 25164107
  10. B. M. Mitrović et al., “137Cs and 40K in some traditional herbal teas collected in the mountain regions of Serbia,” Isotopes Environ. Health Stud., vol. 50, no. 4, pp. 538 – 545, 2014.
    DOI: 10.1080/10256016.2014.964233
    PMid: 25322769
  11. GammaVision®-32, AMETEK Inc. (ORTEC), Oak Ridge (TN), USA, 2006.
  12. M. Jevremovic, N. Lazarevic, S. Pavlovic, M. Orlic, “Radionuclide concentrations in samples of medicinal herbs and effective dose from ingestion of 137Cs and natural radionuclides in herbal tea products from Serbian market,” Isotopes Environ. Health Stud., vol. 47, no. 1, pp. 87 – 92, Mar. 2011.
    DOI: 10.1080/10256016.2011.556723
    PMid: 21390990
  13. K. Chandrashekara, H. M. Somashekarappa, “Estimation of radionuclides concentration and average annual committed effective dose due to ingestion for some selected medicinal plants of South India,” J. Radiat. Res. Appl. Sci., vol. 9, no. 1, pp. 68 – 77, Jan. 2016.
    DOI: 10.1016/j.jrras.2015.09.005


Erjon Spahiu, Irma Bërdufi, Manjola Shyti

Pages: 7–11

DOI: 10.37392/RapProc.2022.03

We are using everyday spices in food as pigment taste, flavor of foods or in human diet and some of them have great benefits for our health and body. In Albania the type of spices in food has been increased in recent years and these vary from country to country, depending on the type of soil and how they are grown. Thus, the aim of this current study attempts to determine the level of radioactivity in different types of spices, which are consumed by people living in the city of Tirana in Albania, where is concentrated the largest number of the population and to estimate their effective dose to the human body. Samples of spices are collected randomly in some different markets in Tirana city, which may be produced in Albania or imported. The activity concentration of natural radionuclides of 40K, 226Ra and 232Th were measured in twenty types of spices. A high-resolution HPGe detector was employed to perform the measurements. The obtained results indicate that 40K, 226Ra and 232Th was detected in all selected samples for study, whereas the presence of artificial radionuclide of 137Cs was found only in two spices samples. 40K activity concentration varies from 173.72 ± 9.34 Bq kg-1 to 849.47 ± 39.36 Bq kg-1. The range of activity concentration of 226Ra varies from 5.15 ± 0.52 Bq kg-1 to 21.01 ± 1.80 Bq kg-1. The activity concentration of 232Th varies from 2.04 ± 0.31 Bq kg-1 to 21.90 ± 1.78 Bq kg-1. The estimated Average Annual Committed Effective Dose (AACED) due to ingestion of these spices varies from 5.61 ± 0.29 μSv y-1 to 10.91 ± 0.56 μSv y-1. All these values are far below than the world average value dose for individual of 290 μSv y-1 for all foods reported by UNSCEAR 2000. This indicates that no risk is expected by the intake of spices samples in food. The obtained data provide us the baseline levels of natural radioactivity and background information for future research on foodstuff for radiological protection of the human.
  1. D. Gottardi, D. Bukvicki, S. Prasad, A. K. Tyagi, “Beneficial Effects of Spices in Food Preservation and Safety,” Front. Microbiol., vol. 7, 1394, Sep. 2016.
    DOI: 10.3389/fmicb.2016.01394
    PMid: 27708620
    PMCid: PMC5030248
  2. M. M. Tajkarimi, S. A. Ibrahim, D. O. Cliver, “Antimicrobial Herb and Spice Compounds in Food,” Food Control, vol. 21, no. 9, pp. 1199 – 1218, Sep. 2010.
    DOI: 10.1016/j.foodcont.2010.02.003
  3. Cardamom: The Genus Elettaria, P. N. Ravindran, K. J. Madhusoodanan, Eds., 1st ed., New York (NY), USA: Taylor and Francis, 2002.
    DOI: 10.1201/9780203216637
  4. S. Prasad, S. C. Gupta, B. B. Aggarwal, “Micronutrients and cancer: add spice to your life,” in Nutrition, Diet and Cancer, S. Shankar, R. K. Srivastava, Eds., 1st ed., Dordrecht, Netherlands: Springer, 2012, ch. 2, pp. 23 – 48.
    DOI: 10.1007/978-94-007-2923-0_2
  5. M. Zehringer, "Radioactivity in Food: Experiences of the Food Control Authority of Basel-City since the Chernobyl Accident", in Radiation Effects in Materials, W. A. Monteiro, Eds., London, United Kingdom: IntechOpen, 2016, ch. 6, pp. 131 – 160.
    Retrieved form: https://www.intechopen.com/chapters/50183
    Retrieved on: Dec. 15, 2021
    DOI: 10.5772/62460
  6. T. T. Van et al., “Estimation of Radionuclide Concentrations and Average Annual Committed Effective Dose due to Ingestion for the Population in the Red River Delta, Vietnam,” Environ. Manage., vol. 63, no. 4, pp. 444 – 454, Apr. 2019.
    DOI: 10.1007/s00267-018-1007-8
    PMid: 29453646
    PMCid: PMC6470118
  7. R. Tykva, J. Sabol, Low Level Environmental Radioactivity: Sources and Evaluation, Lancaster (PA), USA: Technomic Publishing, 1995.
  8. M. Shyti, “Calibration and performance of HPGe detector for environmental radioactivity measurements using LabSOCS,” AIP Conf. Proc., vol. 2075, no. 1, 130012, Feb. 2019.
    DOI: 10.1063/1.5091297
  9. A. Mauring, S. Patterson, B. Seslak, S. Tarjan, A. Trinkl, IAEA-TEL-2020-03 World Wide Open Proficiency Test Exercise, Pie-charts, S-Shapes and Reported Results with Scores , Rep. IAEA-TEL-2020-03, IAEA, Vienna, Austria, 2021.
    Retrieved form: https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/Interlaboratory-Studies.aspx
    Retrieved on: Nov. 10, 2021
  10. M. M. Bé, C. Dulieu, V. Chisté, Bibliotheque des emissions alpha, X et gamma classees par ordre d'energie croissante , Rapport CEA-R-6201, Commissariat à l'énergie atomique, Paris, France, 2008.
    (M. M. Bé, C. Dulieu, V. Chisté, Library for alpha, X and gamma emissions sorted by increasing energy , Rep. CEA-R-6201, French Atomic Energy Commission, Paris, France, 2008.)
    Retrieved from: http://www.nucleide.org/DDEP_WG/Nucleide-LARA_2008.pdf
    Retrieved on: Nov. 10, 2021
  11. S. Turhan, A. Varinlioglu, “Radioactivity measurement of primordial radionuclides in and dose evaluation from marble and glazed tiles used as covering building materials in Turkey,” Radiat. Prot. Dosim., vol. 151, no. 3, pp. 546 – 555, Sep. 2012.
    DOI: 10.1093/rpd/ncs041
    PMid: 22492819
  12. L. E. De Geer, “Currie detection limits in gamma–ray spectroscopy,” Appl. Radiat. Isot., vol. 61, no. 2 – 3, pp. 151 – 160, Sep. 2004.
    DOI: 10.1016/j.apradiso.2004.03.037
    PMid: 15177337
  13. Derivation of Activity Concentration Values for Exclusion, Exemption and Clearance , Safety Reports Series no. 44, IAEA, Vienna, Austria, 2005.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1213_web.pdf
    Retrieved on: Nov. 10, 2021
  14. E. Spahiu, M. Shyti, I. Bërdufi, “Estimation of average annual committed effective dose due to ingestion for some medicinal and herbal plants used in Albania,” IJEES, vol. 10, no. 3, pp. 441 – 446, Jul. 2020.
    DOI: 10.31407/ijees10.302
  15. Sources and effects of ionizing radiation , vol. 1, UNSCEAR Report (A/55/46), UNSCEAR, New York (NY), USA, 2000.
    Retrieved from: https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf
    Retrieved on: Jan. 20, 2021
  16. Age - Dependent Doses to Member of the Public from Intake of Radionuclides: Part 3, Ingestion Dose Coefficients, vol. 25, ICRP Publication no. 69, ICRP, Ottawa, Canada, 1995.
    Retrieved form: https://www.icrp.org/publication.asp?id=ICRP%20Publication%2069
    Retrieved on: Jan. 20, 2021

Radon and Thoron


Kozeta Tushe, Dritan Prifti, Jurgen Shano, Merita Kaçeli, Polikron Dhoqina

Pages: 12–16

DOI: 10.37392/RapProc.2022.04

This study provides information about the population’s general health, the risk perception due to radon exposure, and the socio-demographic characteristics of the target age groups through a survey in which participated 152 people. The questionnaire was part of the Public Opinion Survey (STEAM project) in the framework of the IAEA technical cooperation project RER9153: Enhancing the Regional Capacity to Control Long-Term Risks to the Public due to Radon in Dwellings and Workplaces. This survey includes 152 respondents who took part in an Internet through email and WhatsApp application questionnaire conducted from October 2020 to March 2021 in Albania. The purpose of the questionnaire was to investigate what attitudes people had toward their health and toward radon as a possible health risk factor. The results of this survey which was the first social survey focusing on the radon problem and conducted throughout the country can be used as a basis for planning communication strategies and national radon programs. The survey revealed that in Albania people were poorly aware of radon risk perception on their health. Random sampling error did not exceed 5% for the 95% confidence interval calculated according to the sample size based on the desired accuracy with a 95% confidence level.
  1. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards , Safety Standards Series no. GSR Part 3, IAEA, Vienna, Austria, 2014.
    Retrieved from: https://www pub.iaea.org/MTCD/publications/PDF/Pub1578_web-57265295.pdf
    Retrieved on: Feb. 16, 2018
  2. WHO handbook on indoor radon: a public health perspective, WHO, Geneva, Switzerland, 2009.
    Retrieved from: http://whqlibdoc.who.int/publications/2009/9789241547673_eng.pdf
    Retrieved on: Jan. 15, 2018
  3. The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM on laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom .
    Retrieved from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013L0059
    Retrieved on: Jan. 12, 2018
  4. K. Tushe-Bode et al., “First step towards the geographical distribution of indoor radon in dwellings in Albania”, Radiat. Prot. Dosimetry, vol. 172, no. 4, pp. 488 – 495, Dec. 2016.
    DOI: 10.1093/rpd/ncv494
    PMid: 26656073
  5. Këshilli i Ministrave i Republikës së Shqipërisë. (Nëntor 25, 2015). Vendim nr. 957 për miratimin e rregullores “për nivelet udhëzuese të përqendrimit të radonit në mjediset e brendshme dhe përqendrimet e radiobërthamave në mallra, me efekt mbrojtjen e publikut”.
    (Council of Ministers of the Republic of Albania. (Nov. 25, 2015). Decision no. 957 for the improvement of regulatory standards and concentration of indoor radon and radioactive concentration in goods, in order to protect the public .)
    Retrieved from: http://www.ishp.gov.al/wp-content/uploads/2015/materiale/R.%20Nr.591%20date%2018.08.2011%20 Per%20nivelet%20e%20lejuara%20te%20perqendrimit%20te%20radonit.pdf
    Retrieved on: Jan. 12, 2018
  6. M. A. Lopez et al., “Workplace monitoring for exposures to radon and to other natural sources in Europe: integration of monitoring for internal and external exposures,” Radiat. Prot. Dosimetry, vol. 112, no. 1, pp. 121 – 139, Nov. 2004.
    DOI: 10.1093/rpd/nch285
    PMid: 15574988
  7. National and regional surveys of radon concentration in dwellings, IAEA/AQ/33, IAEA, Vienna, Austria, 2013.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/IAEA-AQ-33_web.pdf
    Retrieved on: Jan. 11, 2018
  8. G. M. Kendall, T. J. Smith, “Doses to organs and tissues from radon and its decay products,” J. Radiol. Prot., vol. 22, no. 4, pp. 389 – 406, Dec. 2002.
    Retrieved from: https://www.researchgate.net/publication/10935193_Kendall_GM_Smith_TJDoses_to_organs_and_tissues_from_ radon_and_its_decay_products_J_Radiol_Prot_22_389-406
    Retrieved on: Feb. 10, 2018
  9. H. Taherdoost, “Determining Sample Size; How to Calculate Survey Sample Size,” IJEMS, vol. 2, pp. 237 – 239, 2017.
    Retrieved from: http://www.iaras.org/iaras/journals/ijems
    Retrieved on: Feb. 16, 2020
  10. The 2007 Recommendations of the International Commission on Radiological Protection , vol. 37, ICRP Publication no. 103, ICRP, Ottawa, Canada, 2007.
    Retrieved from: http://www.icrp.org/docs/ICRP_Publication_103-Annals_of_the_ICRP_37(2-4)-Free_extract.pdf
    Retrieved on: Jan. 15, 2018
  11. H. Reci, S. Dogjani, I. Jata, I. Milushi, “Radon Risk Assessment in Shkodra Regions,” in Proc. Second East European Radon Symposium (Rn SEERAS 2014), Nis, Serbia, 2014.
    Retrieved from: http://www.rad2014.elfak.rs/SEERAS/program.php
    Retrieved on: Dec. 22, 2016
  12. P. Dhoqina, K. Tushe, G. Xhixha, B. Daci, E. Bylyku, “Measurements of indoor radon concentrations in schools in some cities of North Albania,” AIP Conf. Proc., vol. 2075, no. 1, 170003, Feb. 2019.
    DOI: 10.1063/1.5091368
  13. G. Makedonska, J. Djounova, K. Ivanova, “Radon risk communication in Bulgaria,” Radiat. Prot. Dosimetry, vol. 181, no. 1, pp. 26 – 29, Sep. 2018.
    DOI: 10.1093/rpd/ncy096
    PMid: 29901758
  14. K. Tushe-Bode, B. Daci, E. Bylyku, A. Metanaj, “Determination of the radon levels in Berat Region,” AIP Conf. Proc., vol. 2075, no. 1, 160023, Feb. 2019.
    DOI: 10.1063/1.5091350
  15. Sources, Effects and Risks of Ionizing Radiation, Annexes A and B, UNSCEAR 2019 Report to the General Assembly with Scientific Annexes, UNSCEAR, New York (NY), USA, 2019.
    Retrieved from: https://www.unscear.org/unscear/en/publications/2019.html
    Retrieved on: Dec. 22, 2019
  16. Protection of the public against exposure indoors due to radon and other natural sources of radiation , Safety Standards Series no. SSG-32, IAEA, Vienna, Austria, 2015.
    Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1651Web-62473672.pdf
    Retrieved on: Feb. 16, 2018
  17. T. Perko, “Radiation risk perception: a discrepancy between the experts and the general population,” J. Environ. Radioact., vol. 133, pp. 86 – 91, Jul. 2014.
    DOI: 10.1016/j.jenvrad.2013.04.005
    PMid: 23683940
  18. S. Darby et. al., “Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies,” BMJ, vol. 330, no. 7485, 223, Jan. 2005.
    DOI: 10.1136/bmj.38308.477650.63
    PMid: 15613366
    PMCid: PMC546066

Radiation Detectors


Emre Doganci, Aysegul Kahraman, Demet Erol, Ercan Yilmaz

Pages: 17–21

DOI: 10.37392/RapProc.2022.05

The Silicon PIN photodiode (Si-PIN PD) with active area (10.0 x 10.0 mm2, 12.0 x12.0 mm2 and 20.0 x 20.0 mm2) was designed by using Silvaco ATLAS and ATHENA tools at Nuclear Radiation Detectors Applications and Research Center (NÜRDAM). To get Si-PIN PDs’ specifications, capacitance-voltage (C-V) and dark current – voltage (I-V), spectral response measurements were accomplished with Bipolar and Shr model, and Newton method. The dark current and capacitance at -90 V of designed Si-PIN PD are (7.49 nA, 39 pF), (39 nA, 51 pF), (10 nA, 80 pF) for 10x10 mm2, 12x12 mm2, 20x20 mm2 respectively. Si-PIN PDs have low dark current and capacitance at high reverse voltage and all photodiodes reach the full depletion mode at -20 V. Spectral response of each Si-PIN PD is 0.6 AW-1. According to obtained results, designed Si-PIN PDs are likely to be used for medical application after fabrication and radiation test.
  1. A. B. Rosenfeld, “Electronic dosimetry in radiation therapy,” Radiat. Meas., vol. 41, suppl. 1, pp. S134 – S153, Dec. 2006.
    DOI: 10.1016/j.radmeas.2007.01.005
  2. J. Y. Kim et al., “Effect of a guard-ring on the leakage current in a Si-PIN X-ray detector for a single photon counting sensor,” IEICE Trans. Electron., vol. E91.C, no. 5, pp. 703 – 707, May 2008.
    DOI: 10.1093/ietele/e91-c.5.703
  3. S. H. Voldman, C. N. Perez, A. Watson, “Guard rings: Structures, design methodology, integration, experimental results, and analysis for RF CMOS and RF mixed signal BiCMOS silicon germanium technology,” J. Electrostat., vol. 64, no. 11, pp. 730 – 743, Oct. 2006.
    DOI: 10.1016/j.elstat.2006.05.006
  4. D. Wu et al., “A Research on Thick PIN Detector with High Breakdown Voltage,” ECS Trans., vol. 27, no. 1, pp. 1153 – 1158, Nov. 2010.
    DOI: 10.1149/1.3360765
  5. S. U. Urchuk et al., “Spectral sensitivity characteristics simulation for silicon p-i-n photodiode,” J. Phys.: Conf. Ser., vol. 643, 012068, Nov. 2015.
    DOI: 10.1088/1742-6596/643/1/012068
  6. K. S. Park et al., “Estimates of the Photo-Response Characteristics of a Non-Fully-Depleted Silicon p-i-n Photodiode for the Near Infrared Spectral Range and the Experimental Results,” J. Korean Phys. Soc., vol. 50, no. 4, pp. 1156 – 1162, Apr. 2007.
    DOI: 10.3938/jkps.50.1156
  7. B. Tekcan, “Investigation of photodetectors based on III-nitride and metal oxide thin films deposited by atomic layer deposition,” M.Sc. thesis, Bilkent University, Graduate School of Engineering and Science, Ankara, Turkey, 2015.
    Retrieved from: http://repository.bilkent.edu.tr/bitstream/handle/11693/29014/thesis.pdf?sequence=1&isAllowed=y
    Retrieved on: Aug. 12, 2021
  8. C. G. Kang et al., “Correlation between Guard Ring Geometry and Reverse Leakage Current of Si PIN Diode for Radiation Detector,” in Proc. Korean Nuclear Society Autumn Meeting (KNS Autumn Meeting 2017) , Gyeongju, Korea, 2017.
    Retrieved from: https://www.kns.org/files/pre_paper/38/17A-175%EA%B0%95%EC%B0%BD%EA%B5%AC.pdf
    Retrieved on: Aug. 12, 2021
  9. O. Koybasi, G. Bolla, D. Bortoletto, “Guard ring simulations for n-on-p silicon particle detectors,” IEEE Trans. Nucl. Sci., vol. 57, no. 5, pp. 2978 – 2986, Oct. 2010.
    DOI: 10.1109/TNS.2010.2063439
  10. F. Rezaei, F. D. Nayeri, A. Rezaeian, “A novel design of a silicon PIN diode for increasing the breakdown voltage,” IET Circuits, Devices Syst., vol. 16, no. 6, pp. 491 – 499, Sep. 2022.
    DOI: 10.1049/cds2.12120
  11. E. Doğanci et al., “Fabrication and characterization of Si-PIN photodiodes,” Turk. J. Phys., vol. 43, no. 6, pp. 556 – 562, Dec. 2019.
    DOI: 10.3906/fiz-1905-16

Radiation Protection


Dritan Prifti, Kozeta Tushe, Elida Bylyku, Brunilda Daci

Pages: 22–26

DOI: 10.37392/RapProc.2022.06

Institute of Applied Nuclear Physics (IANP) is the main user of radioactive sources in Albania and is licensed by Radiation Protection Commission by decision No. 385 dated 18.11.2016 for the activities of Use, Transport, Storage, Import-Export and treatment of radioactive waste and sources. The safety and security regime for the transport of radioactive materials addresses the radiological concerns and dangers associated with the transport of radioactive materials. IANP uses a new Volkswagen Crafter van, for the transport of radioactive materials for different private and state companies. The Van is equipped with a central locking system of all doors and with a container for the transport of radioactive sources, to increase transport safety and security and to protect radioactive packaging during any possible accident. IANP received also a container for the transport of radioactive materials from the International Atomic Energy Agency in 2020, which has significantly increased the physical security during transport of radioactive sources for transport of radioactive sources and also increased safety in transport to protect radioactive packaging during any possible accident. A physical security system with all security modules is installed to increase the physical security of radioactive sources of different categories that will be transported by this vehicle.
  1. Kuvendil popullor i Republikes se Shqipërisë. (Nëntor 9, 1995). Ligj nr. 8025 ndryshuar me ligjin 9973 dhe me ligjin 26/2013. Per mbrojtjen nga rrezatimet jonizuese.
    (People's Assembly of the Republic of Albania. (Nov. 9, 1995). Law no. 8025 amended by law 9973 and by law 26/2013. On protection from ionizing radiation .)
    Retrieved from: https://www.ishp.gov.al/rrezatimet-jonizuese/ligje-2/
    Retrieved on: May 18, 2022
  2. Security of radioactive material in transport, IAEA Nuclear Security Series no. 9-G (Rev. 1), IAEA, Vienna, Austria, 2020, pp. 39 – 52.
    Retrieved from: https://www.iaea.org/publications/13400/security-of-radioactive-material-in-transport
    Retrieved on: May 18, 2022
  3. Këshilli i Ministrave për miratimin e rregullores. (Tetor 30, 2015). Vendimi nr. 877 për mbrojtjen fizike të materialeve radioaktive në Republikën e Shqipërisë .
    (Council of Minister for the approval of the regulation. (Oct. 30, 2015). Decision no. 877 on physical protection of radioactive materials in the Republic of Albania .)
    Retrieved from: https://www.ishp.gov.al/rrezatimet-jonizuese/ligje-2/
    Retrieved on: May 18, 2022
  4. Këshilli i Ministrave për miratimin e rregullores. (Nëntor 16, 2016). Vendimi nr. 815 për miratimin e rregullores për transportin e sigurt të lëndëve radioactive .
    (Council of Minister for the approval of the regulation. (Nov. 16, 2016). Decision no. 815 on the adoption of the regulation on the safe transport of radioactive materials .)
    Retrieved from: https://www.ishp.gov.al/rrezatimet-jonizuese/ligje-2/
    Retrieved on: May 18, 2022
  5. Regulations for the Safe Transport of Radioactive Material, Specific Safety Requirements no. SSR-6 (Rev. 1), IAEA, Vienna, Austria, 2018, pp. 55 – 85.
    Retrieved from: https://www.iaea.org/publications/12288/regulations-for-the-safe-transport-of-radioactive-material
    Retrieved on: May 25, 2022
  6. Code of conduct on the safety and security of radioactive sources, IAEA/CODEOC/2004, IAEA, Vienna, Austria, 2004, pp. 12 – 16.
    Retrieved from: https://www.iaea.org/publications/6956/code-of-conduct-on-the-safety-and-security-of-radioactive-sources
    Retrieved on: May 25, 2022
  7. Convention on the Physical Protection of Nuclear Material, INFCIRC/274, IAEA, Vienna, Austria, 1980, pp. 4 – 9.
    Retrieved from: https://www.iaea.org/publications/documents/infcircs/convention-physical-protection-nuclear-material
    Retrieved on: May 25, 2022
  8. Procedura për hyrje-dalje në Institutin e Fizikës Bërthamore të Aplikuar , Instituti i Fizikës Bërthamore të Aplikuar, Tiranë, Shqipëri, 2016, fq. 1.
    ( Procedure for entry-exit at the Institute of Applied Nuclear Physics , IANP, Tirana, Albania, 2016, p. 1.)
  9. Procedura për hyrje-dalje në objektin e depozitimit të mbetjeve radioactive , Instituti i Fizikës Bërthamore të Aplikuar, Tiranë, Shqipëri, 2016, fq. 2 – 5.
    (Procedure for entry-exit in the radioactive waste storage facility, IANP, Tirana, Albania, 2016, pp. 2 – 5.)
  10. Procedura për hyrje-dalje në Laboratorin Standard Sekundar të Kalibrimit , Instituti i Fizikës Bërthamore të Aplikuar, Tiranë, Shqipëri, 2016, fq. 2 – 4.
    ( Procedure for entry-exit in the Standard Secondary Calibration Laboratory , IANP, Tirana, Albania, 2016, pp. 2 – 4.)
  11. Procedura për hyrje-dalje në Laboratorin e Rrezatimit, Instituti i Fizikës Bërthamore të Aplikuar, Tiranë, Shqipëri, 2016, fq. 2 – 4.
    (Procedure for entry-exit in the Irradiation Laboratory, IANP, Tirana, Albania, 2016, pp. 2 – 4.)
  12. Generic procedures for assessment and response during a radiological emergency , IAEA-TECDOC-1162, IAEA, Vienna, Austria, 2000, pp. 55 – 79.
    Retrieved from: https://www.iaea.org/publications/5926/generic-procedures-for-assessment-and-response-during-a-radiological-emergency
    Retrieved on: May 25, 2022
  13. Këshilli i Ministrave i Republikës së Shqipërisë. (Korrik 7, 2010). Rregullorja nr. 543 për punën e sigurt me burimet e rrezatimit jonizues .
    (Council of Ministers of the Republic of Albania. (Jul. 7, 2010). Regulation no. 543 on safe work with ionizing radiation sources.)
    Retrieved from: https://www.ishp.gov.al/rrezatimet-jonizuese/rregullore-2/
    Retrieved on: May 18, 2022
  14. Këshilli i Ministrave i Republikës së Shqipërisë. (Gusht 18, 2011). Rregullorja nr. 590 për mbrojtjen e punonjësve të ekspozuar profesionalisht .
    (Council of Ministers of the Republic of Albania. (Aug. 18, 2011). Regulation no. 590 on the protection of professionally exposed employees .)
    Retrieved from: https://www.ishp.gov.al/rrezatimet-jonizuese/rregullore-2/
    Retrieved on: May 18, 2022
  15. Plani i reagimit ndaj emergjencave radiologjike gjatë transportit të burimeve radioactive , Komisioni i Mbrojtjes nga Rrezatimi, Tiranë, Shqipëri, 2018, fq. 11 – 20.
    ( Radiological Emergency Response Plan during transport of radioactive sources , RPC, Tirana, Albania, 2018, pp. 11 – 20.)


Recep Kurtulus, Cansu Kurtulus, Taner Kavas

Pages: 27–30

DOI: 10.37392/RapProc.2022.07

These days, the utilization of industrial solid waste substances for gaining added-value products has become of prime importance for securing a more sustainable future. With this in mind, the present study handles using waste bricks bottom ash (BBA) involving bismuth oxide (Bi2O3) dopant for understanding the potentiality as a radiation protection material. Four different material systems, 1 to 4, were designed using the batches of xBi2O3 - (100-x)BBA where x: 0, 5, 10, and 20 wt%. The intended pellets (D: 28 mm) were made ready after precisely weighing, mixing, and pressing steps. For sintering, the prepared bodies, a heat treatment process was initiated by applying 10 ⁰C/min to reach 1100 ⁰C, which was then dwelled 1h at the peak temperature. Afterward, the successfully produced waste-derived material systems were subjected to some material characterization analysis, as well as theoretical radiation shielding computations via Phy-X/PSD. According to the density measurements, we found out that the increasing doping rate from 0 to 20 wt% in Bi2O3 led to the improvement in bulk density from 1.3857 to 1.6177 g/cm3 in the respective order. Additionally, the compressive strength showed an increasing trend from 7.28 to 8.01 MPa with the increasing Bi2O3 contribution. On the other hand, the essential radiation shielding parameters, linear attenuation coefficient (LAC), half-value layer (HVL), and effective atomic number (Zeff) were figured out, and we found out that all parameters were enhanced owing to the higher Bi2O3 addition. As a result, the sample-4 can be preferred as an alternative material system where radiation protection is significant.
  1. A. H. Almuqrin, M. I. Sayyed, N. S. Prabhu, S. D. Kamath, “Influence of Bi2O3 on Mechanical Properties and Radiation-Shielding Performance of Lithium Zinc Bismuth Silicate Glass System Using Phys-X Software,” Materials, vol. 15, no. 4, 1327, Feb. 2022.
    DOI: 10.3390/MA15041327
    PMid: 35207868
    PMCid: PMC8878981
  2. Z. N. Kuluozturk, R. Kurtulus, N. Demir, T. Kavas, “Barium-lead-borosilicate glass containing lanthanum oxide: fabrication, physical properties, and photon shielding characteristics,” Appl. Phys. A, vol. 128, no. 2, 166, Feb. 2022.
    DOI: 10.1007/s00339-022-05285-7
  3. M. A. Khalaf, C. B. Cheah, M. Ramli, N. M. Ahmed, A. Al-Shwaiter, “Effect of nano zinc oxide and silica on mechanical, fluid transport and radiation attenuation properties of steel furnace slag heavyweight concrete,” Constr. Build. Mater., vol. 274, no. 2, 121785, Mar. 2021.
    DOI: 10.1016/j.conbuildmat.2020.121785
  4. I. Akkurt, H. Akyýldýrým, B. Mavi, S. Kilincarslan, C. Basyigit, “Photon attenuation coefficients of concrete includes barite in different rate,” Ann. Nucl. Energy, vol. 37, no. 7, pp. 910 – 914, Jul. 2010.
    DOI: 10.1016/j.anucene.2010.04.001
  5. C. C. Ban et al., “Modern heavyweight concrete shielding: Principles, industrial applications and future challenges; review,” J. Build. Eng., vol. 39, no. 3, 102290, Jul. 2021.
    DOI: 10.1016/J.JOBE.2021.102290
  6. M. Erdem, O. Baykara, M. Doĝru, F. Kuluöztürk, “A novel shielding material prepared from solid waste containing lead for gamma ray,” Radiat. Phys. Chem., vol. 79, no. 9, pp. 917 – 922, Sep. 2010.
    DOI: 10.1016/j.radphyschem.2010.04.009
  7. K. A. Naseer, K. Marimuthu, M. S. Al-Buriahi, A. Alalawi, H. O. Tekin, “Influence of Bi2O3 concentration on barium-telluro-borate glasses: Physical, structural and radiation-shielding properties,” Ceram. Int., vol. 47, no. 1, pp. 329 – 340, Jan. 2021.
    DOI: 10.1016/J.CERAMINT.2020.08.138
  8. M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, “Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass,” J. Alloys Compd., vol. 745, pp. 355 – 364, May 2018.
    DOI: 10.1016/j.jallcom.2018.02.158
  9. M. S. Al-Buriahi, M. Rashad, A. Alalawi, M. I. Sayyed, “Effect of Bi2O3 on mechanical features and radiation shielding properties of boro-tellurite glass system,” Ceram. Int., vol. 46, no. 10, pp. 16452 – 16458, Jul. 2020.
    DOI: 10.1016/j.ceramint.2020.03.208
  10. K. Boonin et al., “Effect of BaO on lead free zinc barium tellurite glass for radiation shielding materials in nuclear application,” J. Non. Cryst. Solids, vol. 550, 120386, Dec. 2020.
    DOI: 10.1016/j.jnoncrysol.2020.120386
  11. A. F. A. El-Rehim, K. S. Shaaban, “Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses,” J. Mater. Sci.: Mater. Electron., vol. 32, no. 4, pp. 4651 – 4671, Feb. 2021.
    DOI: 10.1007/s10854-020-05204-7
  12. E. Şakar, Ö. F. Özpolat, B. Alım, M. I. Sayyed, M. Kurudirek, “Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry,” Radiat. Phys. Chem., vol. 166, 108496, Jan. 2020.
    DOI: 10.1016/j.radphyschem.2019.108496
  13. E. Ilik et al., “Cerium (IV) oxide reinforced Lithium-Borotellurite glasses: A characterization study through physical, optical, structural and radiation shielding properties,” Ceram. Int., vol. 48, no. 1, pp. 1152 – 1165, Jan. 2022.
    DOI: 10.1016/J.CERAMINT.2021.09.200
  14. A. S. Ouda, “Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding,” Prog. Nucl. Energy, vol. 79, no. 2, pp. 48 – 55, Mar. 2015.
    DOI: 10.1016/j.pnucene.2014.11.009
  15. W. Elshami et al., “Developed selenium dioxide-based ceramics for advanced shielding applications: Au2O3 impact on nuclear radiation attenuation,” Results Phys., vol. 24, no. 5, 104099, May 2021.
    DOI: 10.1016/j.rinp.2021.104099
  16. Y. Al-Hadeethi, M. I. Sayyed, “A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X / PSD software,” Ceram. Int., vol. 46, no. 5, pp. 6136 – 6140, Apr. 2020.
    DOI: 10.1016/j.ceramint.2019.11.078


Irma Bërdufi, Erjon Spahiu, Manjola Shyti, Elida Bylyku

Pages: 31–34

DOI: 10.37392/RapProc.2022.08

This study examines the natural and artificial radioactivity in concrete used as shielding material for medical 60Co source temporary stored in our waste storage site. The determination of the radioactivity level is done to see if any leakage or contamination occurred in concrete material after the dislocation of 60Co source to another destination. Concrete samples were taken from the three drums located in the temporary waste storage site and after preparation of samples were placed in a marinelli beaker with a volume of 500 ml and left in isolation for one month to achieve the secular equilibrium. The activity concentrations of 40K, 226Ra and 232Th in ten samples are determined by using gamma-ray spectrometry method with HPGe detector. The average values of activity concentration are found to be 147.56 ± 6.97 Bqkg-1 for 40K, 18.09 ± 0.64Bqkg-1for 226Ra and 16.90 ± 0.68 Bqkg-1for 232Th, respectively. The activity concentration index (ACI) is used as a screening tool to assess the radiological hazard due to possible release of the concrete in environment or to reuse it as building materials. From all analysis performed the maximum value of ACI was 0.21. This value was found to be lower than 1 and in none of them was found the presence of 60Co radionuclide. We conclude depending on the Decision No. 638, dated on 07.09.2016 on the approval of the regulation “On the safe management of radioactive waste in the Republic of Albania” that the concrete could be discharged freely in environment, or it can be used as building material because do not pose any significant risk to humans.
  1. The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM on laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom .
    DOI: 10.3000/19770677.L_2014.013.eng
  2. Council of Ministers of the Republic of Albania. (Nov. 25, 2015). Decision no. 957 for the approval of the regulations on reference levels of indoor radon concentration and other radio nuclides concentrations in commodities with public protection effect.
  3. Council of Ministers of the Republic of Albania. (Sep. 7, 2016). Decision no. 638 on the approval of the regulation on the safe management of radioactive waste in the Republic of Albania .)
    Retrieved from: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC164065/
    Retrieved on: Aug. 15, 2021
  4. M. Shyti, “Calibration and performance of HPGe detector for environmental radioactivity measurements using LabSOCS”. AIP Conf. Proc., vol. 2075, no. 1, 130012, Feb. 2019.
    DOI: 10.1063/1.5091297
  5. R. Trevisi, S. Risica, M. D`Alessandro, D. Paradiso, C. Nuccetelli, “Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance”, J. Environ. Radioact., vol. 105, pp. 11 – 20, Feb. 2012.
    DOI: 10.1016/j.jenvrad.2011.10.001
  6. E. Spahiu, G. Xhixha, M. K. Xhixha, F. Shala, F. Hasani, “Assessment of natural radioactivity and radiological hazard of Kosovo cements,” IJEES, vol.7, no. 4, pp. 895 – 898, Oct. 2017.

Material Science


Mailes C. Zulu, Erhan Budak, Ercan Yilmaz

Pages: 35–39

DOI: 10.37392/RapProc.2022.09

In this study we report the effect of different frequency on SiNWs based capacitor. The C-V and Gm/ω-V were carried at different frequency of 50 kHz to 1MHz. We found that the capacitance and conductance value decreased as the value of frequency increased and this was as a result of the distribution of interface trap charges in the dielectric layer. The effect of frequency on series resistance (Rs) and interface states density (Dit) were investigated. It was found that the Rs-V curves shifted toward the inversion region, while reducing in the accumulation region. The Dit value showed a decrease in the applied voltage frequency. After removing the effect of Rs from C-V and Gm/ ω-V curves, we found that the capacitance value increased significantly compared to uncorrected one, while the corrected conductance-voltage (Gc/ω-V) had peaks between 0.26V and 2.03V. Moreover, the obtained Dit value was on the order of 1010eV-1 cm -2.
  1. I. Leontis, M. A. Botzakaki, S. N. Georga, A. G. Nassiopoulou, “High capacitance density MIS capacitor using Si nanowires by MACE and ALD alumina dielectric,” J. Appl. Phys., vol. 119, no. 24,244508, Jun. 2016.
    DOI: 10.1063/1.4954883
  2. A. Mutale, E. Yilmaz, “Frequency Dependent Electrical Characteristics of Al/SiO2/SiNWs/n-Si MOS Capacitors,” RAP Conf. Proc., vol. 6, pp. 91 –96, 2021.
    DOI: 10.37392/rapproc.2021.19
  3. X. T. Zhou et al., “Silicon nanowires as chemical sensors,” Chem. Phys. Lett., vol. 369, no. 1–2, pp. 220–224, Feb. 2003.
    DOI: 10.1016/S0009-2614(02)02008-0
  4. R. Nezasa et al., “Fabrication of Silicon Nanowire Metal-Oxide-Semiconductor Capacitors with Al2O3/TiO2/Al2O3 Stacked Dielectric Films for the Application to Energy Storage Devices,” Energies, vol. 14, no. 15, 4538, Jul. 2021.
    DOI: 10.3390/en14154538
  5. R. Nezasa, Y. Kurokawa, N. Usami, “Evaluation of Si Nanowire MOS Capacitor Using High-k Dielectric Materials,” in Proc. IEEE 18th Int. Conf. Nanotechnol. (IEEE-NANO), Cork, Ireland, 2018, pp. 2018 – 2021.
    DOI: 10.1109/NANO.2018.8626356
  6. L. T. Cong et al., “N-type silicon nanowires prepared by silvermetal-assisted chemical etching: Fabrication and optical properties,” Mater. Sci. Semicond. Process., vol. 90, pp. 198–204, Feb. 2019.
    DOI: 10.1016/j.mssp.2018.10.026
  7. P. Nath, D. Sarkar, “Ammonia sensing by silicon nanowires (SINWs) obtained through metal assisted electrochemical etching,” Mater. Today Proc., vol. 57, pp. 224 – 227, 2022.
    DOI: 10.1016/j.matpr.2022.02.369
  8. M. Naffeti, P. A. Postigo, R. Chtourou, M. A. Zaïbi, “Elucidating the effect of etching time key-parameter toward optically and electrically-active silicon nanowires,” Nanomaterials, vol. 10, no. 3, 404, Feb. 2020.
    DOI: 10.3390/nano10030404
    PMid: 32106503
    PMCid: PMC7152846
  9. E. Hourdakis, A. Casanova, G. Larrieu, A. G. Nassiopoulou, “Three-dimensional vertical Si nanowire MOS capacitor model structure for the study of electrical versus geometrical Si nanowire characteristics,” Solid State Electron., vol. 143, pp. 77 – 82, May 2018.
    DOI: 10.1016/j.sse.2017.11.003
  10. U. Gürer, E. Yilmaz, “Investigation of Electrical Characteristics and Surface Morphology of Vanadium Oxide-Vo 2 Mos Devices,” RAP Conf. Proc., vol. 5, pp. 11 – 14, 2021.
    DOI: 10.37392/rapproc.2020.04
  11. K. P. Bastos et al., “Thermal stability of Hf-based high-k dielectric films on silicon for advanced CMOS devices,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 112, no. 2 – 3, pp. 134 – 138, Sep. 2004.
    DOI: 10.1016/j.mseb.2004.05.020
  12. L. U. Vinzons et al., “Unraveling the morphological evolution and etching kinetics of porous silicon nanowires during metal-assisted chemical etching,” Nanoscale Res. Lett., vol. 12, no. 1, 385, Dec. 2017.
    DOI: 10.1186/s11671-017-2156-z
    PMid: 28582967
    PMCid: PMC5457386
  13. S. W. Chang, J. Oh, S. T. Boles, C. V. Thompson, “Fabrication of silicon nanopillar-based nanocapacitor arrays,” Appl. Phys. Lett., vol. 96, no. 15, 153108, Apr. 2010.
    DOI: 10.1063/1.3374889
  14. A. Mutale, E. Yilmaz, “Frequency-dependent electrical characteristics of Al/Er2O3 /SiO2 /n-Si/ Al MOS capacitor deposited by e-beam,” RAP Conf. Proc., vol. 5, pp. 15 – 20, 2021.
    DOI: 10.37392/rapproc.2020.05
  15. A. Aktağ, A. Mutale, E. Yılmaz, “Determination of frequency and voltage dependence of electrical properties of Al/(Er2O3/SiO2/n-Si)/Al MOS capacitor,” J. Mater. Sci. Mater. Electron., vol. 31, no. 11, pp. 9044 – 9051, Jun. 2020.
    DOI: 10.1007/s10854-020-03438-z
  16. H. M. Singh, Y. Y. Lim, P. Chinnamuthu, “Electrical and dielectric parameters in TiO 2-NW/Ge-NW heterostructure MOS device synthesized by glancing angle deposition technique,” Sci. Rep., vol. 11, no. 1, 19837, Oct. 2021.
    DOI: 10.1038/s41598-021-99354-1
    PMid: 34615953
    PMCid: PMC8494745
  17. A. Mutale, S. C. Deevi, E. Yilmaz, “Effect of annealing temperature on the electrical characteristics of Al/Er2O3/n-Si/Al MOS capacitors,” J. Alloys Compd., vol. 863, 158718, May 2021.
    DOI: 10.1016/j.jallcom.2021.158718
  18. S. S. Cetin, H. I. Efkere, T. Sertel, A. Tataroglu, S. Ozcelik, “Electrical Properties of MOS Capacitor with TiO2/SiO2 Dielectric Layer,” Silicon, vol. 12, no. 12, pp. 2879 – 2883, Dec. 2020.
    DOI: 10.1007/s12633-020-00383-8


Alex Mutale, Ercan Yilmaz, Oktay Aytar

Pages: 40–44

DOI: 10.37392/RapProc.2022.10

The investigations of gamma irradiation response on silicon nanowires (SiNWs) based MOS capacitor with high- k of Yb2O3 is very important in the fields of semiconductors physics and nanotechnology. Hence, in this current work, we fabricated SiNWs using metal assisted chemical etching (MACE) technique and then Al/Yb 2O3/SiNWs/n-Si (100)/Al MOS capacitor was exposed to gamma rays using Co-60 source at different doses of 0-4Gy, respectively. Our experimental results demonstrated that the capacitance value in the accumulation region decreased with increasing in the radiation dose, while the C-V curves shifted toward negative voltage side. In addition, the interface states density (Dit) increased with an increase in the gamma irradiation exposure. The value of Dit was found in the range of 6.98×1009 eV-1 cm-2 and 1.14×1010 eV-1 cm-2.
  1. A. Enache et al., “PLL-Based Readout Circuit for SiC-MOS Capacitor Hydrogen Sensors in Industrial Environments,” Sensors, vol. 22, no. 4, 1462, Feb. 2022.
    DOI: 10.3390/s22041462
    PMid: 35214371
    PMCid: PMC8879939
  2. C. Lu, Z. Chen, K. Saito, “Hydrogen sensors based on Ni/SiO2/Si MOS capacitors,” Sens. Actuators B Chem., vol. 122, no. 2, pp. 556 – 559, Mar. 2007.
    DOI: 10.1016/j.snb.2006.06.029
  3. K. I. Chen, B. R. Li, Y. T. Chen, “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation,” Nano Today, vol. 6, no. 2, pp. 131 – 154, Apr. 2011.
    DOI: 10.1016/j.nantod.2011.02.001
  4. Y. Li et al., “Study of γ-ray irradiation influence on TiN/HfO2/Si MOS capacitor by C-V and DLTS,” Superlattices Microstruct., vol. 120, pp. 313 – 318, Aug. 2018.
    DOI: 10.1016/j.spmi.2018.05.046
  5. J. Shi et al., “Synergistic effects in MOS capacitors with an Au/HfO2-SiO2/Si structure irradiated with neutron and gamma ray,” J. Phys. D: Appl. Phys., vol. 55, no. 11, 115104, Mar. 2022.
    DOI: 10.1088/1361-6463/ac3ce8
  6. F. B. Ergin, R. Turan, S. T. Shishiyanu, E. Yilmaz, “Effect of γ-radiation on HfO2 based MOS capacitor,” Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At., vol. 268, no. 9, pp. 1482 – 1485, May 2010.
    DOI: 10.1016/j.nimb.2010.01.027
  7. A. Tataroʇlu, M. Yildirim, H. M. Baran, “Dielectric characteristics of gamma irradiated Au/SnO2/n-Si/Au (MOS) capacitor,” Mater. Sci. Semicond. Process., vol. 28, pp. 89 – 93, Dec. 2014.
    DOI: 10.1016/j.mssp.2014.06.053
  8. M. Ding, “Radiation Response of AI2O3 based Metal-Oxide-Semiconductor Structures under Gamma-ray,” IOP Conf. Ser.: Earth Environ. Sci., vol. 742, no. 1, 012014, May 2021.
    DOI: 10.1088/1755-1315/742/1/012014
  9. A. Kahraman, A. Mutale, R. Lok, E. Yilmaz, “Effect of high-radiation-dose-induced structural modifications of HfSiO4/n-Si on electrical characteristics,” Radiat. Phys. Chem., vol. 196, 110138, Jul. 2022.
    DOI: 10.1016/j.radphyschem.2022.110138
  10. K. M. Chintala, S. Panchal, P. Rana, R. P. Chauhan, “Structural, optical and electrical properties of gamma-rays exposed selenium nanowires,” J. Mater. Sci. Mater. Electron., vol. 27, no. 8, pp. 8087 – 8093, Aug. 2016.
    DOI: 10.1007/s10854-016-4808-7
  11. H. Shehla et al., “γ -Rays Irradiation Induced Structural and Morphological Changes in Copper Nanowires,” J. Nanomater., vol. 2016, 6134801, Sep. 2016.
    DOI: 10.1155/2016/6134801
  12. A. Reyhani, A. Gholizadeh, V. Vahedi, M. R. Khanlari, “Effect of gamma radiation on the optical and structural properties of ZnO nanowires with various diameters,” Opt. Mater., vol. 75, pp. 236 – 242, Jan. 2018.
    DOI: 10.1016/j.optmat.2017.10.027
  13. N. Manikanthababu, N. Arun, M. Dhanunjaya, S. V. S. Nageswara Rao, A. P. Pathak, “Gamma irradiation-induced effects on the electrical properties of HfO2-based MOS devices,” Radiat. Eff. Defects Solids, vol. 171, no. 1 – 2, pp. 77 – 86, Feb. 2016.
    DOI: 10.1080/10420150.2015.1135152
  14. A. Kaur, R. P. Chauhan, “Effect of gamma irradiation on electrical and structural properties of Zn nanowires,” Radiat. Phys. Chem., vol. 100, pp. 59 – 64, Jul. 2014.
    DOI: 10.1016/j.radphyschem.2014.03.027
  15. A. Kahraman, S. C. Deevi, E. Yilmaz, “Influence of frequency and gamma irradiation on the electrical characteristics of Er2O3, Gd2O3, Yb2O3, and HfO2 MOS-based devices,” J. Mater. Sci., vol. 55, no. 19, pp. 7999 – 8040, Jul. 2020.
    DOI: 10.1007/s10853-020-04531-8
  16. Y. S. Rammah, A. A. Ali, R. El-Mallawany, F. I. El-Agawany, “Fabrication, physical, optical characteristics and gamma-ray competence of novel bismo-borate glasses doped with Yb2O3 rare earth,” Physica B Condens. Matter, vol. 583, 412055, Apr. 2020.
    DOI: 10.1016/j.physb.2020.412055
  17. S. K. Meena, L. Meena, N. L. Heda, B. L. Ahuja, “High energy γ-ray Compton spectroscopy and electronic response of rare earth sesquioxides Er2O3 and Yb2O3,” Radiat. Phys. Chem., vol. 176, 108990, Nov. 2020.
    DOI: 10.1016/j.radphyschem.2020.108990
  18. Z. Huang, N. Geyer, P. Werner, J. De Boor, U. Gösele, “Metal-assisted chemical etching of silicon: A review,” Adv. Mater., vol. 23, no. 2, pp. 285 – 308, Jan. 2011.
    DOI: 10.1002/adma.201001784
    PMid: 20859941
  19. M. Gayrard et al., “Replacing Metals with Oxides in Metal-Assisted Chemical Etching Enables Direct Fabrication of Silicon Nanowires by Solution Processing,” Nano Lett., vol. 21, no. 5, pp. 2310 – 2317, Mar. 2021.
    DOI: 10.1021/acs.nanolett.1c00178
    PMid: 33600718
  20. A. Kahraman, H. Karacali, E. Yilmaz, “Impact and origin of the oxide-interface traps in Al/Yb2O3/n-Si/Al on the electrical characteristics,” J. Alloys Compd., vol. 825, 154171, Jun. 2020.
    DOI: 10.1016/j.jallcom.2020.154171
  21. A. H. Chiou, T. C. Chien, C. K. Su, J. F. Lin, C. Y. Hsu, “The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching,” Curr. Appl. Phys., vol. 13, no. 4, pp. 717 – 724, Jun. 2013.
    DOI: 10.1016/j.cap.2012.11.011
  22. A. Mutale, E. Yilmaz, “Frequency Dependent Electrical Characteristics of Al/SiO2/SiNWs/n-Si MOS Capacitors,” RAP Conf. Proc., vol. 6, pp. 91 – 96, 2021.
    DOI: 10.37392/rapproc.2021.19
  23. A. Mutale, S. C. Deevi, E. Yilmaz, “Effect of annealing temperature on the electrical characteristics of Al/Er2O3/n-Si/Al MOS capacitors,” J. Alloys Compd., vol. 863, 158718, May 2021.
    DOI: 10.1016/j.jallcom.2021.158718
  24. M. Naffeti, P. A. Postigo, R. Chtourou, M. A. Zaïbi, “Elucidating the effect of etching time key-parameter toward optically and electrically-active silicon nanowires,” Nanomaterials, vol. 10, no. 3, 404, Feb. 2020.
    DOI: 10.3390/nano10030404
    PMid: 32106503
    PMCid: PMC7152846
  25. K. S. Mohan, A. Panneerselvam, J. Chandrasekaran, R. Marnadu, M. Shkir, “An in-depth examination of opto-electrical properties of In-Yb2O3 thin films and fabricated Al/In-Yb2O3/p-Si (MIS) hetero junction diodes,” Appl. Nanosci., vol. 11, no. 5, pp. 1617 – 1635, May 2021.
    DOI: 10.1007/s13204-021-01817-4
  26. R. Rana, J. Chakraborty, S. K. Tripathi, M. Nasim, “Study of conducting ITO thin film deposition on flexible polyimide substrate using spray pyrolysis,” J. Nanostructure Chem., vol. 6, no. 1, pp. 65 – 74, Mar. 2016.
    DOI: 10.1007/s40097-015-0177-7
  27. L. U. Vinzons et al., “Unraveling the morphological evolution and etching kinetics of porous silicon nanowires during metal-assisted chemical etching,” Nanoscale Res. Lett., vol. 12, no. 1, 385, Dec. 2017.
    DOI: 10.1186/s11671-017-2156-z
    PMid: 28582967
    PMCid: PMC5457386
  28. A. Kahraman, U. Gurer, E. Yilmaz, “The effect and nature of the radiation induced oxide-interface traps on the performance of the Yb2O3 MOS device,” Radiat. Phys. Chem., vol. 177, 109135, Dec. 2020.
    DOI: 10.1016/j.radphyschem.2020.109135
  29. J. Zhang et al., “Studies of radiation effects in Al2O3-based metal-oxide-semiconductor structures induced by Si heavy ions,” J. Appl. Phys., vol. 125, no. 11, 115701, Mar. 2019.
    DOI: 10.1063/1.5052584
  30. S. Maurya, “Effect of zero bias Gamma ray irradiation on HfO2 thin films,” J. Mater. Sci. Mater. Electron., vol. 27, no. 12, pp. 12796 – 12802, Dec. 2016.
    DOI: 10.1007/s10854-016-5412-6


Racheal Chirwa, Alex Mutale, Ercan Yilmaz

Pages: 45–49

DOI: 10.37392/RapProc.2022.11

In this paper, we report the influence of post deposition annealing temperature on structural, morphological, and electrical properties of silicon nanowires (SiNWs) with Y2O3. SiNWs were fabricated by metal assisted chemical etching (MACE) method at room temperature. After the fabrication process, the high-k of Y2 O3 was deposited onto SiNW/n-Si(100) by e-beam evaporation technique. Three samples of Y2O3 with SiNWs were annealed at 200oC, 400oC and 600oC in N2 ambient for 40 min, while one sample was kept as deposited, respectively. The crystalline and morphological properties of Y2O3/SiNWs/n-Si(100) were analyzed by XRD and SEM techniques. On the other hand, the electrical properties of the capacitors based on SiNWs were investigated through C-V measurements at 1MHz. We found that the capacitance value in the accumulation region, dielectric constant(k) and interface states density (Nit) decreased with an increase in the annealing temperature. This could be attributed to the formation of interfacial layer and dangling bonds during high annealing temperature.
  1. A. I. Efimova et al., “Effect of annealing temperature on thermo-diffusional boron doping of silicon nanowire arrays probed by Raman spectroscopy,” J. Raman Spectrosc. , vol. 51, no. 11, pp. 2146 – 2152, Nov. 2020.
    DOI: 10.1002/jrs.5956
  2. R. Nezasa, Y. Kurokawa, N. Usami, “Fabrication of a Si Nanowire MOS Capacitor for the Application to Energy Storage Devices,” in Proc. 2017 Int. Conf. Solid State Devices and Materials (SSDM2017) , Sendai, Japan, 2017, pp. 1009 – 1010.
    DOI: 10.7567/ssdm.2017.ps-13-02
  3. J. E. Stehr et al., “Effects of growth temperature and thermal annealing on optical quality of GaNAs nanowires emitting in the near-infrared spectral range,” Nanotechnology, vol. 31, no. 6, 065702, Jan. 2020.
    DOI: 10.1088/1361-6528/ab51cd
    PMid: 31658456
  4. H. Saidi et al., “Investigation of the SiNWs concentration and annealing effects on the structural, morphological and optical properties of P3HT: SiNWs nanocomposite,” Adv. Nat. Sci.: Nanosci. Nanotechnol., vol. 11, no. 2, 025011, Jun. 2020.
    DOI: 10.1088/2043-6254/ab9193
  5. A. A. Leonardi, M. J. Lo Faro, A. Irrera, “Silicon nanowires synthesis by metal-assisted chemical etching: A review,” Nanomaterials, vol. 11, no. 2, 383, Feb. 2021.
    DOI: 10.3390/nano11020383
    PMid: 33546133
    PMCid: PMC7913243
  6. M. Rahmani, A. Meftah, “Electrical characterisation of Ag/poly(3-hexylthiophene)/silicon nanowires Schottky diode,” J. Mater. Sci.: Mater. Electron., vol. 31, no. 19, pp. 16352 – 16359, Oct. 2020.
    DOI: 10.1007/s10854-020-04185-x
  7. V. H. Mudavakkat, V. V. Atuchin, V. N. Kruchinin, A. Kayani, C. V. Ramana, “Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films,” Opt. Mater., vol. 34, no. 5, pp. 893 – 900, Mar. 2012.
    DOI: 10.1016/j.optmat.2011.11.027
  8. S. Abubakar, S. Kaya, A. Aktag, E. Yilmaz, “Yttrium oxide nanostructured thin films deposited by radio frequency sputtering: the annealing optimizations and correlations between structural, morphological, optical and electrical properties,” J. Mater. Sci.: Mater. Electron., vol. 28, no. 18, pp. 13920 – 13927, Sep. 2017.
    DOI: 10.1007/s10854-017-7241-7
  9. A. Mutale, S. C. Deevi, E. Yilmaz, “Effect of annealing temperature on the electrical characteristics of Al/Er2O3/n-Si/Al MOS capacitors,” J. Alloys Compd., vol. 863, 158718, May 2021.
    DOI: 10.1016/j.jallcom.2021.158718
  10. M. Naffeti, P. A. Postigo, R. Chtourou, M. A. Zaïbi, “Elucidating the effect of etching time key-parameter toward optically and electrically-active silicon nanowires,” Nanomaterials, vol. 10, no. 3, 404, Feb. 2020.
    DOI: 10.3390/nano10030404
    PMid: 32106503
    PMCid: PMC7152846
  11. A. G. Khairnar, A. M. Mahajan, “Effect of post-deposition annealing temperature on RF-sputtered HfO2 thin film for advanced CMOS technology,” Solid State Sci., vol. 15, pp. 24 – 28, Jan. 2013.
    DOI: 10.1016/j.solidstatesciences.2012.09.010
  12. T. M. Pan, W. T. Chang, F. C. Chiu, “Structural properties and electrical characteristics of high-k Dy2O3 gate dielectrics,” Appl. Surf. Sci., vol. 257, no. 9, pp. 3964 – 3968, Feb. 2011.
    DOI: 10.1016/j.apsusc.2010.11.144
  13. S. K. Chuah, K. Y. Cheong, Z. Lockman, Z. Hassan, “Effect of post-deposition annealing temperature on CeO2 thin film deposited on silicon substrate via RF magnetron sputtering technique,” Mater. Sci. Semicond. Process., vol. 14, no. 2, pp. 101 – 107, Jun. 2011.
    DOI: 10.1016/j.mssp.2011.01.007
  14. R. H. Horng, D. S. Wuu, J. W. Yu, C. Y. Kung, “Effects of rapid thermal process on structural and electrical characteristics of Y2O3 thin films by r.f.-magnetron sputtering,” Thin Solid Films, vol. 289, no. 1 – 2, pp. 234 – 237, Nov. 1996.
    DOI: 10.1016/S0040-6090(96)08907-9
  15. I. Leontis, M. A. Botzakaki, S. N. Georga, A. G. Nassiopoulou, “High capacitance density MIS capacitor using Si nanowires by MACE and ALD alumina dielectric,” J. Appl. Phys., vol. 119, no. 24, 244508, Jun. 2016.
    DOI: 10.1063/1.4954883


Umutcan Gürer, Ozan Yilmaz, Erhan Budak, Ercan Yilmaz

Pages: 50–53

DOI: 10.37392/RapProc.2022.12

The graphene is one of the most popular materials of our age since its discovery. The graphene and its derivatives have gained much attention in sensor applications because of its features (e.g., electronic conductivity, specific surface area, etc.). However, the coating of graphene is challenging for the researchers especially for Si/SiO2 surfaces due to its surface tension. Many researchers tend to use chemical materials for the coating rGO onto Si/SiO2 such as APTES, TEOS, PEG, HMDS etc. For the purpose, we discovered a novel type ultrasonic-assisted coating method for sensor applications which can be done using any chemicals. To do so, we firstly produced reduced graphene oxide (rGO) from graphite by using Hummer’s method and chemical reduction process. Then, we prepared Si/SiO2 samples and put them into plastic container. After that, we put samples into ultrasonic bath and dropped rGO suspension onto samples by using with micro-pipette. After that, the rGO coated samples were dried on hot plate at 100°C. The results showed high potential that rGO can be coated onto Si/SiO2 surfaces with low-cost solution.
  1. K. S. Novoselov et al., “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666 – 669, Oct. 2004.
    DOI: 10.1126/science.1102896
    PMid: 15499015
  2. A. Béraud et al., “Graphene field-effect transistors as bioanalytical sensors: design, operation and performance,” Analyst, vol. 146, no. 2, pp. 403 – 428, Jan. 2021.
    DOI: 10.1039/d0an01661f
    PMid: 33215184
  3. F. Yan, M. Zhang, J. Li, “Solution-gated graphene transistors for chemical and biological sensors,” Adv. Healthc. Mater., vol. 3, no. 3, pp. 313 – 331, Mar. 2014.
    DOI: 10.1002/adhm.201300221
    PMid: 23950074
  4. X. Zhi et al., “γ-Aminopropyl triethoxysilane functionalized graphene oxide for composites with high dielectric constant and low dielectric loss,” Compos. Part A: Appl. Sci. Manuf., vol. 76, pp. 194 – 202, Sep. 2015.
    DOI: 10.1016/j.compositesa.2015.05.015
  5. W. Palas, M. Saisriyoot, P. Prapainainar, P. Dittanet, “Electrochemical Performance of Reduced Graphene Oxide-Silica Composite in Polyaniline,” Mater. Today: Proc., vol. 17, part 4, pp. 1277 – 1283, 2019.
    DOI: 10.1016/j.matpr.2019.06.016
  6. S. Ghosh, K. Chatterjee, “Poly(Ethylene Glycol) Functionalized Graphene Oxide in Tissue Engineering: A Review on Recent Advances,” Int. J. Nanomedicine, vol. 15, pp. 5991 – 6006, Aug. 2020.
    DOI: 10.2147/IJN.S249717
    PMid: 33192060
    PMCid: PMC7656781
  7. S. Ramadan et al., “Enhancing Structural Properties and Performance of Graphene-Based Devices Using Self-Assembled HMDS Monolayers,” ACS Omega, vol. 6, no. 7, pp. 4767 – 4775, Feb. 2021.
    DOI: 10.1021/acsomega.0c05631
    PMid: 33644584
    PMCid: PMC7905810
  8. S. Abdolhosseinzadeh, H. Asgharzadeh, H. S. Kim, “Fast and fully-scalable synthesis of reduced graphene oxide,” Sci. Rep ., vol. 5, 10160, May 2015.
    DOI: 10.1038/srep10160
    PMid: 25976732
    PMCid: PMC4432372
  9. M. Fang et al., “Preparation of highly conductive graphene-coated glass fibers by sol-gel and dip-coating method,” J. Mater. Sci. Technol., vol. 35, no. 9, pp. 1989 – 1995, Sep. 2019.
    DOI: 10.1016/j.jmst.2019.05.027
  10. S. Y. Kim, H. E. Gang, G. T. Park, H. Bin Jeon, Y. G. Jeong, “Microstructure and electrothermal characterization of transparent reduced graphene oxide thin films manufactured by spin-coating and thermal reduction,” Results Phys., vol. 24, 104107, May 2021.
    DOI: 10.1016/j.rinp.2021.104107
  11. J. T. Jeong et al., “Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate,” Sci. Rep., vol. 6, 33835, Sep. 2016.
    DOI: 10.1038/srep33835
    PMid: 27652886
    PMCid: PMC5031981
  12. L. Hu et al., “Direct anodic exfoliation of graphite onto high-density aligned graphene for large capacity supercapacitors,” Nano Energy, vol. 34, pp. 515 – 523, Apr. 2017.
    DOI: 10.1016/j.nanoen.2017.03.007
  13. V. Shukla, “Observation of critical magnetic behavior in 2D carbon based composites,” Nanoscale Adv., vol. 2, no. 3, pp. 962 – 990, Jan. 2020.
    DOI: 10.1039/c9na00663j
    PMid: 36133050
    PMCid: PMC9418615
  14. N. M. S. Hidayah et al., “Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization,” AIP Conf. Proc., vol. 1892, no. 1, 150002, Oct. 2017.
    DOI: 10.1063/1.5005764
  15. A. Thakur, S. Kumar, V. S. Rangra, “Synthesis of reduced graphene oxide (rGO) via chemical reduction,” AIP Conf. Proc., vol. 1661, no. 1, 080032, May 2015.
    DOI: 10.1063/1.4915423
  16. M. Tas, Y. Altin, A. C. Bedeloglu, “Reduction of graphene oxide thin films using a stepwise thermal annealing assisted by L-ascorbic acid,” Diam. Relat. Mater., vol. 92, pp. 242 – 247, Feb. 2019.
    DOI: 10.1016/j.diamond.2019.01.009
  17. I. Boukhoubza, “X-ray diffraction investigations of nanostructured ZnO coated with reduced graphene oxide,” J. Phys.: Conf. Ser., vol. 1292, 012011, 2019.
    DOI: 10.1088/1742-6596/1292/1/012011
  18. C. Xu et al., “Fabrication and characteristics of reduced graphene oxide produced with different green reductants,” PLoS ONE, vol. 10, no. 12, e0144842, Dec. 2015.
    DOI: 10.1371/journal.pone.0144842
    PMid: 26658644
    PMCid: PMC4682625
  19. E. Andrijanto, S. Shoelarta, G. Subiyanto, S. Rifki, “Facile synthesis of graphene from graphite using ascorbic acid as reducing agent,” AIP Conf. Proc., vol. 1725, no. 1, 020003, Apr. 2016.
    DOI: 10.1063/1.4945457

Environmental Physics


Erjon Spahiu, Irma Bërdufi, Manjola Shyti, Florinda Cfarku

Pages: 54–57

DOI: 10.37392/RapProc.2022.13

The activity concentrations of 7Be, 210Pb, 40K and 137Cs in ground level air at the monitoring station in Tirana, Albania were determined during the period from January 2021 to January 2022. To perform a routine air radioactivity monitoring, we used a typical aerosol sampling station located at the Institute of Applied Nuclear Physics in Tirana not only for routine air radioactivity monitoring, but also to monitor the air in the institute from the radiation protection point of view because in the institute are located the temporary radioactive waste site, 137Cs source used in the secondary standard dosimetry laboratory and 137Cs irradiation source. Activities in all aerosol samples are measured by gamma spectrometer with High Purity Germanium detector (HPGe). The cylinder geometry efficiency curve generated by Canberra’s Laboratory Sourceless Calibration Software (LabSOCS) was used to analyze the air filters. The obtained results show the activity concentrations of cosmogenic 7Be ranged from 2.38 to 6.82 mBq m–3 with a maximum in the spring/summer period. The activity concentrations for 210Pb were in the range 0.37 to 1.27 mBq m–3. The activity concentrations of anthropogenic 137Cs in ground level air was observed only in three air filters in the range 0.30–6.01 μBq m–3. The monitoring is done for the first time in Albania, providing us the data of cosmogenic and terrestrial radionuclides in ground level air. This study will continue also in the future in order to see the variation of radionuclides during the years.
  1. S. Bławzej, J. W. Mietelski, “Cosmogenic 22Na, 7Be and terrestrial 137Cs, 40K radionuclides in ground level air samples collected weekly in Kraków (Poland) over years 2003-2006,” J. Radioanal. Nucl. Chem., vol. 300, no. 2, pp. 747 – 756, May 2014.
    DOI: 10.1007/s10967-014-3049-6
    PMid: 26224972
    PMCid: PMC4514665
  2. D. Todorovic, D. Popovic, J. Nikolic, J. Ajtic, “Radioactivity monitoring in ground level air in Belgrade urban area,” Radiat. Prot. Dosimetry, vol. 142, no. 2 – 4, pp. 308 – 313, Dec. 2010.
    DOI: 10.1093/rpd/ncq211
    PMid: 20833680
  3. D. Huang, H. Bao, T. Yu, “Temporal Variations in Radionuclide Activity (7Be and 210Pb) in Surface Aerosols at a Coastal Site in Southeastern China,” Aerosol Air Qual. Res., vol. 19, no. 9, pp. 1969 – 1979, Sep. 2019.
    DOI: 10.4209/aaqr.2019.02.0084
  4. A. Ioannidou, M. Manolopoulou, C. Papastefanou, “Temporal changes of 7Be and 210Pb concentrations in surface air at temperate latitudes (40°N),” Appl. Radiat. Isot., vol. 63, no. 2, pp. 277 – 284, Aug. 2005.
    DOI: 10.1016/j.apradiso.2005.03.010
    PMid: 15921916
  5. P. Lipinski, K. A. Isajenko, M. Biernacka, A. Zak, “Integration of Polish Monitoring Networks (ASS-500 and PMS systems),” Nukleonika, vol. 46, no. 4, pp. 143 – 146, Aug. 2001.
    Retrieved from: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BUJ6-0006-0103?q=bwmeta1. element.baztech-volume-0029-5922-nukleonika-2001-vol__46_nr_4;5&qt=CHILDREN-STATELESS
    Retrieved on: Sep. 15, 2021
  6. S. Grabowska, J. W. Mietelski, K. Kozak, P. Gaca, “Gamma Emitters on Micro-Becquerel Activity Level in Air at Kraków (Poland),” J. Atmos. Chem., vol. 46, no. 2, pp. 103 – 116, Oct. 2003.
    DOI: 10.1023/A:1026067614448
  7. M. Bysiek, M. Biernacka, P. Lipinski, “Radioactivity of ground-level air in Poland. Results from ASS-500 stations network,” Nukleonika, vol. 46, no. 4, pp. 171 – 173, Sep. 2001.
    Retrieved from: http://www.ichtj.waw.pl/ichtj/nukleon/back/full/vol46_2001/v46n4p171f.pdf
    Retrieved on: Sep. 15, 2021
  8. M. C. Lépy et al., “Intercomparison of efficiency transfer software for gamma-ray spectrometry,” Appl. Radiat. Isot., vol. 55, no. 4, pp. 493 – 503, Oct. 2001.
    DOI: 10.1016/S0969-8043(01)00101-4
  9. F. L. Bronson, “Validation of the accuracy of the LabSOCS software for mathematical efficiency calibration of Ge detectors for typical laboratory samples,” J. Radioanal. Nucl. Chem., vol. 255, no. 1, pp. 137 – 141, Jan. 2003.
    DOI: 10.1023/A:1022248318741
  10. M. Shyti, “Calibration and performance of HPGe detector for environmental radioactivity measurements using LabSOCS,” AIP Conf. Proc., vol. 2075, no. 1, 130012, Feb. 2019.
    DOI: 10.1063/1.5091297
  11. L. E. De Geer, “Currie detection limits in gamma–ray spectroscopy,” Appl. Radiat. Isot., vol. 61, no. 2–3, pp. 151 – 160, Aug.-Sep. 2004.
    DOI: 10.1016/j.apradiso.2004.03.037
    PMid: 15177337
  12. A. Mauring, S. Patterson, B. Seslak, S. Tarjan, A. Trinkl, IAEA-TEL-2020-03 World Wide Open Proficiency Test Exercise, Pie-charts, S-Shapes and Reported Results with Scores , Rep. IAEA-TEL-2020-03, IAEA, Vienna, Austria, 2021.
    Retrieved from: https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/Interlaboratory-Studies.aspx
    Retrieved on: Nov. 10, 2021
  13. M. M. Janković et al., “Temporal concentration changes of beryllium-7 and lead-210 in ground level air level Serbia,” Chem. Ind., vol. 68, no. 1, pp. 83 – 88, Jan. 2014.
    DOI: 10.2298/HEMIND130320031J



Jasmina Obradovic, Vladimir Jurisic

Pages: 58–61

DOI: 10.37392/RapProc.2022.14

Quick identification of coronavirus was an emergency in the COVID-19 pandemic. The most used diagnostic tools were serologic, rapid antigen tests, as fast, easily applicable, and affordable, but with lower sensitivity. The results were usually confirmed with a reverse transcription polymerase chain reaction. This assay requires proper expertise and robust laboratory equipment. It is further, costly and time-consuming, with restricted application in low-income countries. Even so, it is used as a golden standard, since it has high specificity and sensitivity. The serologic antibody-based assays were also applied during this Covid-19 burden. Their application was able two weeks after the Covid-19 onset since that was the period when antibodies might be detected. Here are briefly presented the advantages and disadvantages of these assays. Meanwhile, the majority of the diagnostic tests were developed, with some of them being automated and highly sensitive, but often costly. The general recommendation is the improvement of the sensitivity of the serologic tests and development of the easily applicable, fast, and accurate diagnostic tests.
  1. E. Mahase, “China coronavirus: WHO declares international emergency as death toll exceeds 200,” BMJ, vol. 368, m408, Jan. 2020.
    DOI: 10.1136/bmj.m408
    PMid: 32005727
  2. M. J. Mina, K. G. Andersen, “COVID-19 testing: One size does not fit all,” Science, vol. 371, no. 6525, pp. 126 – 127, Jan. 2021.
    DOI: 10.1126/science.abe9187
    PMid: 33414210
  3. V. Thakur, R. K. Ratho, “OMICRON (B.1.1.529): A new SARS-CoV-2 variant of concern mounting worldwide fear,” J. Med. Virol., vol. 94, no. 5, pp. 1821 – 1824, May 2022.
    DOI: 10.1002/jmv.27541
    PMid: 34936120
  4. S. K. Saxena et al., “Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global perspective,” J. Med. Virol., vol. 94, no. 4, pp. 1738 – 1744, Apr. 2022.
    DOI: 10.1002/jmv.27524
    PMid: 34905235
  5. A. La Marca et al., “Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays,” Reprod. Biomed. Online, vol. 41, no. 3, pp. 483 – 499, Sep. 2020.
    DOI: 10.1016/j.rbmo.2020.06.001
    PMid: 32651106
    PMCid: PMC7293848
  6. M. N. Zahan et al., “Diagnosis of COVID-19 in symptomatic patients: An updated review,” Vacunas, vol. 23, no. 1, pp. 55 – 61, Jan. – Apr. 2022.
    DOI: 10.1016/j.vacun.2021.06.002
    PMid: 34276268
    PMCid: PMC8275488
  7. S. S. Khandker, N. H. H. Nik Hashim, Z. Z. Deris, R. H. Shueb, M. A. Islam, “Diagnostic Accuracy of Rapid Antigen Test Kits for Detecting SARS-CoV-2: A Systematic Review and Meta-Analysis of 17,171 Suspected COVID-19 Patients,” J. Clin. Med., vol. 10, no. 16, 3493, Aug. 2021.
    DOI: 10.3390/jcm10163493
    PMid: 34441789
    PMCid: PMC8397079
  8. J. Hayer, D. Kasapic, C. Zemmrich, “Real-world clinical performance of commercial SARS-CoV-2 rapid antigen tests in suspected COVID-19: A systematic meta-analysis of available data as of November 20, 2020,” Int. J. Infect. Dis., vol. 108, pp. 592 – 602, Jul. 2021.
    DOI: 10.1016/j.ijid.2021.05.029
    PMid: 34015523
    PMCid: PMC8127520
  9. M. Arshadi et al., “Diagnostic Accuracy of Rapid Antigen Tests for COVID-19 Detection: A Systematic Review With Meta-analysis,” Front. Med., vol. 9, 870738, Apr. 2022.
    DOI: 10.3389/fmed.2022.870738
    PMid: 35463027
    PMCid: PMC9021531
  10. M. C. Smithgall, M. Dowlatshahi, S. L. Spitalnik, E. A. Hod, A. J. Rai, “Types of Assays for SARS-CoV-2 Testing: A Review,” Lab. Med., vol. 51, no. 5, pp. e59 – e65, Sep. 2020.
    DOI: 10.1093/labmed/lmaa039
    PMid: 32657343
    PMCid: PMC7454768
  11. F. Fenollar et al., “Evaluation of the Panbio COVID-19 Rapid Antigen Detection Test Device for the Screening of Patients with COVID-19,” J. Clin. Microbiol., vol. 59, no. 2, Jan. 2021.
    DOI: 10.1128/jcm.02589-20
    PMid: 33139420
    PMCid: PMC8111145
  12. M. L. Bastos et al., “Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis,” BMJ, vol. 370, m2516, Jul. 2020.
    DOI: 10.1136/bmj.m2516
    PMid: 32611558
    PMCid: PMC7327913
  13. J. Obradovic et al., “Optimization of PCR conditions for amplification of GC-Rich EGFR promoter sequence,” J. Clin. Lab. Anal., vol. 27, no. 6, pp. 487 – 493, Nov. 2013.
    DOI: 10.1002/jcla.21632
    PMid: 24218132
    PMCid: PMC6807403
  14. J. Obradovic, V. Jurisic, J. Todosijevic, “Application of the conventional and novel methods in testing EGFR variants for NSCLC patients in the last 10 years through different regions: a systematic review,” Mol. Biol. Rep., vol. 48, no. 4, pp. 3593 – 3604, Apr. 2021.
    DOI: 10.1007/s11033-021-06379-w
    PMid: 33973139
  15. A. Afzal, “Molecular diagnostic technologies for COVID-19: Limitations and challenges,” J. Adv. Res., vol. 26, pp. 149 – 159, Nov. 2020.
    DOI: 10.1016/j.jare.2020.08.002
    PMid: 32837738
    PMCid: PMC7406419
  16. R. Weissleder, H. Lee, J. Ko, M. J. Pittet, “COVID-19 diagnostics in context,” Sci. Transl. Med., vol. 12, no. 546, eabc1931, Jun. 2020.
    DOI: 10.1126/scitranslmed.abc1931
    PMid: 32493791
  17. I. M. Artika, A. Wiyatno, C. N. Ma’roef, “Pathogenic viruses: Molecular detection and characterization,” Infect. Genet. Evol., vol. 81, 104215, Jul. 2020.
    DOI: 10.1016/j.meegid.2020.104215
    PMid: 32006706
    PMCid: PMC7106233
  18. A. R. Craney et al., “Comparison of Two High-Throughput Reverse Transcription-PCR Systems for the Detection of Severe Acute Respiratory Syndrome Coronavirus 2,” J. Clin. Microbiol., vol. 58, no. 8, Jul. 2020.
    DOI: 10.1128/jcm.00890-20
    PMid: 32381643
    PMCid: PMC7383551
  19. E. Degli-Angeli et al., “Validation and verification of the Abbott RealTime SARS-CoV-2 assay analytical and clinical performance,” J. Clin. Virol., vol. 129, 104474, Aug. 2020.
    DOI: 10.1016/j.jcv.2020.104474
    PMid: 32504946
    PMCid: PMC7395853
  20. G. D. Braunstein, L. Schwartz, P. Hymel, J. Fielding, “False Positive Results With SARS-CoV-2 RT-PCR Tests and How to Evaluate a RT-PCR-Positive Test for the Possibility of a False Positive Result,” J. Occup. Environ. Med., vol. 63, no. 3, pp. e159 – e162, Mar. 2021.
    DOI: 10.1097/jom.0000000000002138
    PMid: 33405498
    PMCid: PMC7934325
  21. L. M. Kucirka, S. A. Lauer, O. Laeyendecker, D. Boon, J. Lessler, “Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure,” Ann. Intern. Med., vol. 173, no. 4, pp. 262 – 267, Aug. 2020.
    DOI: 10.7326/m20-1495
    PMid: 32422057
    PMCid: PMC7240870
  22. H. Ritchie et al., Coronavirus Pandemic (Covid-19), Our World in Data, Oxford, UK, 2020.
    Retrieved from: https://ourworldindata.org/coronavirus
    Retrieved on: Sep. 13, 2021



Dragana Pap

Pages: 62–66

DOI: 10.37392/RapProc.2022.15

Inaccurate results of laboratory testing are mostly caused by errors in the preanalytical phase. The aim of this retrospective study is monitoring, documenting and preventing errors in the pre-analytical phase in order to provide better health care for patients. The study has been done from 2017 to 2021 and involves monitoring, documenting and preventing errors with aspect to phlebotomy in clinical biochemical laboratory of primary health care, in Students Health Protection Institute. Errors are classified in accordance with IFCC recommendation as quality indicators: insufficient sample volume, inappropriately labeled sample and sample damage. The study has shown that the most common errors are insufficient sample volume and sample damage (0.97 %). Inappropriately labeled samples were significantly lower and completely eliminated during period of study (2017 was 0.34 %, 2021 was 0 %; p<0.01). No significant decrease in number of sample damage (2017- 0.50 % - 2021- 0.30 %) was shown and insufficient sample volume errors (2017- 0.43% - 2021-0.32%) were constantly persisting during the period of study. Through permanent improvement and application of quality management system (QMS), implementation of certification and accreditation of laboratories according to the ISO15189, 2018- (QM / QA) standards for medical laboratories the entire laboratory testing process can be improved. Implementation of LIS (Laboratory Information System), the standard for POCT-ISO22870: 2006 Point of care testing, along with clear transparent and available procedures, errors in the pre-analytical phase can be minimized. Special attention should be paid on errors that continue to exist in the study. With more accurate, precise and valid results, correct and fast diagnosis, satisfied patients can be achieved with a smaller number of errors in pre-analytical phase and the principle of cost benefit can be achieved following the guideline: “no blood sample is better than a bad blood sample”.
  1. M. Zaninotto, M. Plebani, “Understanding and managing interferences in clinical laboratory assays: the role of laboratory professionals,” Clin. Chem. Lab. Med., vol. 58, no. 3, pp. 350 – 356, Feb. 2020.
    DOI: 10.1515/cclm-2019-0898
    PMid: 31622245
  2. M. Plebani, M. Laposata, G. D. Lundberg, “The brain-to-brain loop concept for laboratory testing 40 years after its introduction,” Am. J. Clin. Pathol., vol. 136, no. 6, pp. 829 – 833, Dec. 2011.
    PMid: 22095366
  3. M. Plebani, “Quality Indicators to Detect Pre-Analytical Errors in Laboratory Testing,” Clin. Biochem. Rev., vol. 33, no. 3, pp. 85 – 88, Aug. 2012.
    PMid: 22930602
    PMCid: PMC3428256
  4. G. Lippi et al., “Error rates during blood collection in emergency departments and outpatient clinics: Results of a prospective multicenter study,” Clin. Chim. Acta., vol. 445, pp. 91 – 92, May 2015.
    DOI: 10.1016/j.cca.2015.03.022
    PMid: 25818240
  5. N. Nikolac, “Lipemia: causes, interference mechanisms, detection and management,” Biochem. Med. (Zagreb), vol. 24, no. 1, pp. 57 – 67, Feb. 2014.
    DOI: 10.11613/BM.2014.008
    PMid: 24627715
    PMCid: PMC3936974
  6. M. Plebani, “Exploring the iceberg of errors in laboratory medicine,” Clin. Chim. Acta., vol. 404, no. 1, pp. 16 – 23, Jun. 2009.
    DOI: 10.1016/j.cca.2009.03.022
    PMid: 19302995
  7. G. Lippi, “Preanalytical quality improvement. In pursuit of harmony, on behalf of European Federation for Clinical Chemistry and Laboratory Medicine (EFLM) Working group for Preanalytical Phase (WG-PRE), Clin. Chem. Lab. Med., vol. 53, no. 3, pp. 357 – 370, Feb. 2015.
    DOI: 10.1515/cclm-2014-1051
    PMid: 25490032
  8. M. Plebani, “Errors in clinical laboratories or errors in laboratory medicine?,” Clin. Chem. Lab. Med., vol. 44, no. 6, pp. 750 – 759, May 2006.
    DOI: 10.1515/CCLM.2006.123
    PMid: 16729864
  9. M. Plebani, “The detection and prevention of errors in laboratory medicine,” Ann. Clin. Biochem., vol. 47, no. 2, pp. 101 – 110, Mar. 2010.
    DOI: 10.1258/acb.2009.009222
    PMid: 19952034
  10. A. M. Simundic et al., “Joint EFLM-COLABIOCLI Recommendation for venous blood sampling,” Clin. Chem. Lab. Med., vol. 56, no. 12, pp. 2015 – 2038, Nov. 2018.
    DOI: 10.1515/cclm-2018-0602
    PMid: 30004902
  11. B. Caruso, C. Bovo, G. C. Guidi, “Causes of preanalytical interferences on laboratory immunoassays – a critical review,” EJIFCC, vol. 31, no. 1, pp. 70 – 84, Mar. 2020.
    PMid: 32256291
    PMCid: PMC7109499
  12. J. Favresse, M. C. Burlacu, D. Maiter, D. Gruson, “Interferences with thyroid function immunoassays: clinical implications and detection algorithm,” Endocr. Rev., vol. 39, no. 5, pp. 830 – 850, Oct. 2018.
    DOI: 10.1210/er.2018-00119
    PMid: 29982406
  13. L. Wauthier, M. Plebani, J. Favresse, “Interferences in immunoassays: review and practical algorithm,” Clin. Chem. Lab. Med., vol. 60, no. 6, pp. 808 – 820, Mar. 2022.
    DOI: 10.1515/cclm-2021-1288
    PMid: 35304841
  14. J. Schiettecatte, E. Anckaert, J. Smitz, “Interferences in Immunoassays,” in Advances in Immunoassay Technology, N. H. L. Chiu, T. K. Christopoulos, Eds., Rijeka, Croatia: Intech, 2012, ch. 3, pp. 45 – 62.
    DOI: 10.5772/35797
  15. J. Favresse et al., “D-dimer: preanalytical, analytical, postanalytical variables, and clinical applications,” Crit. Rev. Clin. Lab. Sci., vol. 55, no. 8, pp. 548 – 577, Dec. 2018.
    DOI: 10.1080/10408363.2018.1529734
    PMid: 30694079
  16. G. Ward, A. Simpson, L. Boscato, P. E. Hickman, “The investigation of interferences in immunoassay,” Clin. Biochem., vol. 50, no. 18, pp. 1306 – 1311, Dec. 2017.
    DOI: 10.1016/j.clinbiochem.2017.08.015
    PMid: 28847718
  17. A. M. Jones, J. W. Honour, “Unusual results from immunoassays and the role of the clinical endocrinologist,” Clin. Endocrinol., vol. 64, no. 3, pp. 234 – 244, Mar. 2006.
    DOI: 10.1111/j.1365-2265.2006.02439.x
    PMid: 16487430
  18. G. Lima-Oliveira, D. Monneret, F. Guerber, G. C. Guidi, “Sample management for clinical biochemistry assays: are serum and plasma interchangeable specimens?,” Crit. Rev. Clin. Lab. Sci., vol. 55, no. 7, pp. 480 – 500, Nov. 2018.
    DOI: 10.1080/10408363.2018.1499708
    PMid: 30309270
  19. G. Dimeski, “Interference testing,” Clin. Biochem. Rev., vol. 29, no. 1, pp. S43 – 48, Aug. 2008.
    PMid: 18852856
    PMCid: PMC2556582
  20. M. Plebani, “Analytical quality: an unfinished journey,” Clin. Chem. Lab. Med., vol. 56, no. 3, pp. 357 – 359, Feb. 2018.
    DOI: 10.1515/cclm-2017-0717
    PMid: 28902617
  21. F. G. Strathmann, M. M. Ka, P. M. Rainey, G. S. Baird, “Use of the BD vacutainer rapid serum tube reduces false-positive results for selected beckman coulter Unicel DxI immunoassays,” Am. J. Clin. Pathol., vol. 136, no. 2, pp. 325 – 329, Aug. 2011.
    PMid: 21757607
  22. M. Vogeser, C. Seger, “Irregular analytical errors in diagnostic testing - a novel concept,” Clin. Chem. Lab. Med., vol. 56, no. 3, pp. 386 – 396, Feb. 2018.
    DOI: 10.1515/cclm-2017-0454
    PMid: 28902615
  23. R. Srivastava et al., “Reflex and reflective testing: efficiency and effectiveness of adding on laboratory tests,”Ann. Clin. Biochem., vol. 47, no. 3, pp. 223 – 227, May 2010.
    DOI: 10.1258/acb.2010.009282
    PMid: 20392754
  24. D. Wang et al., “Effect of sampling time on estimates of thyroid-stimulating hormone, free thyroxine, and free triiodothyronine levels,” Scand. J. Clin. Lab. Invest., vol. 79, no. 7, pp. 459 – 462, Nov. 2019.
    DOI: 10.1080/00365513.2019.1626904
    PMid: 31526200
  25. S. X. Soh, T. P. Loh, S. K. Sethi, L. Ong, “Methods to reduce lipemic interference in clinical chemistry tests: a systematic review and recommendations,” Clin. Chem. Lab. Med.,vol .60, no. 2, pp. 152 – 161, Nov. 2021.
    DOI: 10.1515/cclm-2021-0979
    PMid: 34773729
  26. A. A. A. Ismail, “Identifying and reducing potentially wrong immunoassay results even when plausible and “not-unreasonable”,” Adv. Clin. Chem., vol. 66, pp. 241 – 294, 2014.
    DOI: 10.1016/b978-0-12-801401-1.00007-4
    PMid: 25344990
  27. C. M. Sturgeon, A. Viljoen, “Analytical error and interference in immunoassay: minimizing risk,” Ann. Clin. Biochem., vol. 48, no. 5, pp. 418 – 432, Sep. 2011.
    DOI: 10.1258/acb.2011.011073
    PMid: 21750113
  28. A. von Meyer, G. Lippi, A. M. Simundic, J. Cadamuro, “Exact time of venous blood sample collection - an unresolved issue, on behalf of the European Federation for Clinical Chemistry and Laboratory Medicine (EFLM) Working Group for Preanalytical Phase (WG-PRE),” Clin. Chem. Lab. Med., vol. 58, no. 10, pp. 1655 – 1662, Sep. 2020.
    DOI: 10.1515/cclm-2020-0273
    PMid: 32549131
  29. A. Clerico et al., “A Black Swan in clinical laboratory practice: the analytical error due to interferences in immunoassay methods,” Clin. Chem. Lab. Med., vol. 56, no. 3, pp. 397 – 402, Feb. 2018.
    DOI: 10.1515/cclm-2017-0881
    PMid: 29220884

Other topics


Christos Alexopoulos, Milena Despotovic, Milena Zlatanovic, Marija Mikic Mladenovic, Ivan Milojevic, Marko Jovanovic

Pages: 67–71

DOI: 10.37392/RapProc.2022.16

In the past five years, population policy in Serbia has dealt with declining birth rates and strategies to raise them because current trends indicate that birth rates will not increase significantly, which will further contribute to a significant decline in population. Objectives: The aim of this paper is to present an overview of measures to prevent falling birth rates in the Republic of Serbia, as well as their effects. Materials and methods: This paper belongs to the group of review papers. Various databases are reviewed, selected references are analyzed, systematized and presented in this paper. Results: The most important measures of population policy in Serbia are parental allowance and maternity allowance. Like the parental allowance, the salary compensation for mothers is defined by the Law on Financial Support to Families with Children. Families whose monthly income for the last three months does not exceed the established threshold are entitled to child allowance. In 2020, the Republic Health Insurance Fund enabled insured women up to the age of 43, who are being treated for infertility, to be entitled to an unlimited number of attempts at biomedically assisted artificial insemination. The state has also adopted a Strategy for Encouraging Birth. Statistical data show that a slight increase in the fertility rate was observed in the previous decade (1.43 in 2013; 1.46 in 2016; 1.49 in 2018, and 1.52 in 2019). Conclusion: It is still early to talk about the effects of the measures, given that some of them have only recently been introduced and that it is necessary to pass a certain period of time in order to see the results. The historical context, economic and social factors, but also the global pandemic of the SARS-COV-2 virus should be taken into account. In order for population policy measures to yield better results in the future, work needs to be done to strengthen the framework for their implementation.
  1. J. Marković, Populaciona politika u zemljama regiona i Norveškoj, Br. 29/IP, Biblioteka narodne skupštine Republike Srbije, Beograd, Srbija, 2017.
    (J. Marković, Population policy in the countries of the region and Norway, No. 29/IP, Library of the National Assembly of the Republic of Serbia, Belgrade, Serbia, 2017.)
    Retrieved from: http://www.parlament.gov.rs/narodna-skupstina-/organizacija-i-strucna-sluzba/biblioteka-narodne-skupstine.1506.html
    Retrieved on: Feb. 20, 2022
  2. A. Gavrilović, “Populaciona politika lokalne samouprave: potrebe, mogućnosti i ograničenja,” Zbornik Matice srpske za društvene nauke, vol. 2006, br. 121, str. 171 — 186, 2006.
    (A. Gavrilović, “Population Policy of Local Self-Government: Necessities, Possibilities and Limitation,” Proc. Soc. Sci. Matica Srpska, vol. 2006, no. 121, pp. 171 — 185, 2006.)
    DOI: 10.2298/ZMSDN0621171G
  3. S. Samardžić, “Populaciona politika, planiranje porodice - postojeće tendencije i moguća rešenja,” Zbornik radova Pravnog fakulteta, Novi Sad, vol. 45, br. 3, str. 715 – 735, 2011.
    (S. Samardžić, “Population Policy, Family Planning – Current Trends and Possible Solutions,” Proc. Fac. Law, Novi Sad, vol. 45, no. 3, pp. 715 – 735, 2011.)
    DOI: 10.5937/zrpfns1103715S
  4. B. Đurđev, D. Arsenović, “Demografski razvoj i populaciona politika Republike Srbije,” u Zborniku radova Simpozijuma Demografska politika u Republici Srpskoj - stvarnost i potrebe , Banja Luka, Bosna i Hercegovina, 2014, str. 71 – 80.
    (B. Đurđev, D. Arsenović, “Demographic development and population policy of the Republic of Serbia,” in Proc. Symp. Demographic Policy in the Republic of Srpska - reality and needs , Banja Luka, Bosnia and Herzegovina, 2014, pp 71 – 80.)
    Retrieved from: https://www.researchgate.net/publication/284120026_Demografski_razvoj_i_populaciona_politika_Republike_Srbije
    Retrieved on: Feb. 20, 2022
  5. M. Stamenović, S. Ćuzović, “Depopulacija Srbije - borba za opstanak jednog naroda,” Revizor, vol. 22, br. 87 – 88, str. 81 – 89, 2019.
    (M. Stamenović, S. Ćuzović, “Depopulation of Serbia - Battle for the existence of one nation,” Revizor, vol. 22, no. 87 – 88, pp. 81 – 89, 2019.)
    DOI: 10.5937/Rev1988081S
  6. D. Marinković, A. Majić, “Population policy and family planning in the Republic of Srpska – situation and trends,” Herald, no. 17, pp. 69 – 85, 2013.
    DOI: 10.7251/HER1714069M
  7. Stavovi i mišljenja građana tri opštine o natalitetu i merama o podsticanju nataliteta , Kabinet ministra bez portfelja zadužen za demografiju i populacionu politiku I Futuristički institut, Beograd, Srbija, 2018.
    ( Attitudes and opinions of the citizens of three municipalities about the birth rate and measures to encourage the birth rate , The cabinet of the minister without portfolio in charge of demography and population policy and Futuristic Institute, Belgrade, Serbia, 2018.)
    Retrieved from: https://www.mdpp.gov.rs/doc/Istrazivanje-populaciona.pdf
    Retrieved on: Feb. 20, 2022
  8. G. Zdravković, “Demografske promene stanovništva Srbije između dva popisa, 2002-2011. godine,” Timočki medicinski glasnik, vol. 41, br. 4, str. 293 – 301, 2016.
    (G. Zdravković, “Demographic changes of Serbia’s population between the two censuses, 2002-2011,” Timok Med. Gaz., vol. 41, no. 4, pp. 293 – 301, 2016.)
    DOI: 10.5937/tmg1604293Z
  9. Stopa fertiliteta, Republicki zavod za statistiku, Elektronska baza podataka, Beograd, Srbija.
    (Fertility rate, Republic Institute of Statistics, Electronic Data Base, Belgrade, Serbia.)
    Retrieved from: https://data.stat.gov.rs/Home/Result/180706?languageCode=sr-Latn
    Retrieved on: Feb. 25, 2022
  10. Narodna skupština Republike Srbije. (Jul 17, 2009). Sl. glasnik RS br. 24/2005, 61/2005 i 54/2009. Zakon o radu.
    (National Assembly of the Republic of Serbia. (Jul. 17, 2009). Official Gazette of RS no. 24/2005, 61/2005 and 54/2009. Labor Law.)
    Retrieved from: http://www.artf.ni.ac.rs/wpcontent/uploads/2012/10/Zakon-o-radu.pdf
    Retrieved on: Feb. 25, 2022
  11. Narodna skupština Republike Srbije. (Jun 29, 2018). Sl. glasnik RS br. 113/2017 i 50/2018. Zakon o finansijsoj podršci porodici s decom.
    (National Assembly of the Republic of Serbia. (Jun. 29, 2018). Official Gazette of RS no. 113/2017 and 50/2018. Law on financial support for families with children .)
    Retrieved from: https://www.paragraf.rs/propisi/zakon-o-finansijskoj-podrsci-porodici-sa-decom.html
    Retrieved on: Feb. 25, 2022
  12. Narodna skupština Republike Srbije. (Dec. 29, 2010). Sl. glasnik RS br. 34/2003, 64/2004 - odluka USRS, 84/2004 - dr. zakon, 85/2005, 101/2005 - dr. zakon, 63/2006 – odluka USRS, 5/2009, 107/2009 i 101/2010. Zakon o penzijskom i invalidskom osiguranju.
    (National Assembly of the Republic of Serbia. (Dec. 29, 2010). Official Gazette of RS no. 34/2003, 64/2004 - decision of the USRS, 84/2004 - other laws, 85/2005, 101/2005 - other laws, 63/2006 - decision of the USRS, 5/2009, 107/2009 and 101/2010. Law on pension and disability insurance .)
    Retrieved from: https://www.pio.rs/sites/default/files/Zakon%20o%20PIO-2019%20cir.pdf
    Retrieved on: Feb. 25, 2022
  13. M. Rašević, “Populaciona politika u Srbiji: stanje i očekivanja,” Stanovništvo, vol. 47, br. 2, str. 53 – 65, 2009.
    (M. Rašević, “Population Policy: State and Expectations,” Population, vol. 47, no. 2, pp. 53 – 65, 2009.)
    Retrieved from: http://www.doiserbia.nb.rs/img/doi/0038-982X/2009/0038-982X0902053R.pdf
    Retrieved on: Mar. 05, 2022
  14. Uputstvo za lečenje neplodnosti postupcima biomedicinski potpomognutog oplođenja (BMPO), Republički fond za zdravstveno osiguranje, Beograd, Srbija, 2022.
    ( Instructions for the treatment of infertility by biomedically assisted fertilization procedures (BMPO) , Republic Fund for Health Insurance, Belgrade, Serbia, 2022.)
    Retrieved from: https://www.rfzo.rs/download/vto/Uputstvo%20za%20sprovodjenje%20lecenja%20neplodnosti%20postupcima %20biomedicinski%20potpomognutog%20oplodjenja%20(BMPO).pdf
    Retrieved on: Mar. 05, 2022
  15. Narodna skupština Republike Srbije. (Dec. 12, 2016). Sl. glasnik RS br. 99/2016. Zakon o budžetu Republike Srbije za 2017. godinu.
    (National Assembly of the Republic of Serbia. (Dec. 12, 2016). Official Gazette of the RS no. 99/2016. Law on the Budget of the Republic of Serbia for 2017 .)
    Retrieved from: https://www.paragraf.rs/propisidownload/zakonobudzeturepublikesrbijeza2017godinu.pdf
    Retrieved on: Mar. 05, 2022
  16. M. Rašević, V. Nikitović. “Strategija podsticanja rađanja i Agenda 2030. Ujedinjenih nacija,” Bilten Ministarstva za za rad, zapošljavanje, boračka i socijalna pitanja , br. 4, Beograd, Srbija, Dec. 2019.
    (M. Rašević, V. Nikitović, “Linkage Between Fertility Policies in Serbia and the United Nations Agenda 2030,” Bull. Ministry of Labour, Employment, Veteran and Social Affairs, no. 4, Belgrade, Serbia, Dec. 2019.)
    Retrieved from: https://www.researchgate.net/publication/337785127_Strategija_podsticanja_radanja_i_Agenda_2030_Ujedinjenih_ nacija_Linkage_Between_Fertility_Policies_in_Serbia_and_the_United_Nations_Agenda_2030
    Retrieved on: Mar. 05, 2022


Bojan Veljković, Sandra Dukić, Mina Mihajlović, Zorica Kaludjerović, Momčilo Todorović, Christos Alexopoulos

Pages: 72–75

DOI: 10.37392/RapProc.2022.17

With the advent of the Internet and social networks, we are increasingly encountering the term “Cyberbullying” – electronic violence, harassment through digital technologies, mobile phones, correspondence platforms and the like. It is a behavior that is repeated with the intention of intimidating, embarrassing and humiliating a certain person. Live abuse and cyberbullying can often go hand in hand, with cyberbullying leaving a digital footprint that can be helpful in stopping it. The Cyberbullying survey was conducted in April 2022 on 150 respondents of both sexes, aged 16-25 in Serbia, with an online Questionnaire containing 16 questions with offered answers. The results of the research indicate that 90% of the respondents have heard about violence on social networks, over 30% stated that they have experienced some kind of violence on social networks. It was determined that women are more exposed to cyber violence, most often by the opposite sex, most often on Instagram (24.7%) and Facebook (19.3%), and a larger number of respondents report violence to friends rather than parents. The negative consequences that cyber violence has left on the victim are mostly emotional (30%). The largest number of respondents (85.3%) believe that the best form of protection is blocking and reporting a person who is trying to commit violence. The results of the research confirmed our hypothesis about the significant prevalence of violence on social networks, the complexity of its manifestation and the impact on the mental and emotional state of victims. Further research of this social phenomenon on a larger sample is necessary in order to create prevention and protection measures as successfully as possible.
  1. S. Balta, “Elektronsko nasilje na društvenim mrežama među djecom i adolescentima,” Završni magistarski rad, Univerzitet u Sarajevu, Odsjek za psihologiju, Sarajevo, Bosna i Hercegovina, 2019.
    (S. Balta. “Electronic violence on social networks among children and adolescents,” Final master’s thesis, University of Sarajevo, Department of Psychology, Sarajevo, Bosnia and Herzegovina, 2019.)
    Retrieved from: https://www.ff.unsa.ba/files/zavDipl/19_20/psi/Svetlana-Balta.pdf
    Retrieved on: Jan. 18, 2022.
  2. Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije. (Apr. 2, 2019). Br. 110-00-00086/2019-04. Pravilnik o protokolu postupanja u ustanovi u odgovoru na nasilje, zlostavljanje i zanemarivanje .
    (Ministry of Education, Science and Technological Development of the Republic of Serbia. (Apr. 2, 2019). No. 110-00-00086/2019-04. Rulebook on the protocol of behavior in the institution in agreement to violence, abuse and neglect .)
    Retrieved from: https://www.paragraf.rs/propisi/pravilnik_o_protokolu_postupanja_u_ustanovi.html
    Retrieved on: Jan. 18, 2022.
  3. Šta je digitalno nasilje i kako da ga zaustavimo?, Unicef Srbija, Beograd, Srbija.
    (What is digital violence and how to stop it?, UNICEF Serbia, Belgrade, Serbia.)
    Retrieved from: https://www.unicef.org/serbia/zaustavimo-digitalno-nasilje
    Retrieved on: Jan. 18, 2022.
  4. D. Popadić, D. Kuzmanović, Mladi u svetu interneta: Korišćenje digitalne tehnologije, rizici i zastupljenost digitalnog nasilja među učenicima u Srbiji , Minstarstvo prosvete, nauke i tehnološkog razvoja, Beograd, Srbija, 2013.
    (D. Popadić, D. Kuzmanović, Young people in the world of the Internet: Use of digital technology, risks and prevalence of digital violence among students in Serbia , Ministry of Education, Science and Technological Development, Belgrade, Serbia, 2013.)
    Retrieved from: http://sbn.rs/clientpub/uploads/Digitalno%20nasilje-Izvestaj%202013.pdf
    Retrieved on: Jan. 18, 2022.
  5. Digitalno nasilje, Čuvam te, Nacionalna platforma za prevenciju nasilja koje ukljucuje decu, Beograd, Srbija.
    (Digital violence, I’m protecting you, National platform for the prevention of violence involving children, Belgrade, Serbia.)
    Retrieved from: https://cuvamte.gov.rs/sta-je-nasilje/digitalno-nasilje/
    Retrieved on: Jan. 25, 2022.
  6. N. Ljepava, D. Tomić, Dž. Nuhodžić, M. Gnjatović, “Cyberbullying, online behavior and psychological well-being of students: an engineering management approach,” Serb. J. Eng. Manag., vol. 4, no. 1, pp. 9 – 14, Jan. 2019.
    DOI: 10.5937/SJEM1901009L
  7. Effects of Social Media on Children, Cleveland Clinic, Health Essentials, Cleveland (OH), USA, 2021.
    Retrieved from: https://health.clevelandclinic.org/dangers-of-social-media-for-youth/
    Retrieved on: Jan. 25, 2022.
  8. Kako zaštititi bezbednost dece na društvenim mrežama, Čuvam te, Nacionalna platforma za prevenciju nasilja koje uključuje decu, Beograd, Srbija, 2019.
    (How to keep children safe on social media, I’m protecting you, National platform for the prevention of violence involving children, Belgrade, Serbia, 2019.)
    Retrieved from: https://cuvamte.gov.rs/sr/vest/kako-zastititi-bezbednost-dece-na-drustvenim-mrezama/4009.php
    Retrieved on: Jan. 25, 2022.
  9. Rizici i opasnosti na društvenim mrežama, Republika Hrvatska, Ministarstvo unutrašnjih poslova, Zagreb, Hrvatska, 2022.
    (Risks and dangers on social networks, Republic of Croatia, Ministry of the Interior, Zagreb, Croatia, 2022.)
    Retrieved from: https://mup.gov.hr/print.aspx?id=281997&url=print
    Retrieved on: Jan. 25, 2022.
  10. J. Rančić, “Vršnjačko nasilje na društvenim mrežama u Republici Srbiji,” CM: Komunikacija i Mediji, vol. 13, br. 43, str. 95 – 124, Dec. 2018.
    (J. Rančić, “Peer violence on social networks in the Republic of Serbia,” CM: Communication and Media, vol. 13, no. 43, pp. 95 – 124, Dec. 2018.)
    DOI: 10.5937/comman13-18786
  11. D. Stanković, “Sajber nasilje na društvenim mrežama među mladima u Republici Srbiji,” RKKP, vol. 57, br. 2, str. 9 – 23, Maj-Avgust 2019.
    (D. Stanković, “Cyber violence on social networks among young people in the Republic of Serbia,” Criminology and Criminal Law Review, vol. 57, no. 2, pp. 9 – 23, May-Avg. 2019.)
    Retrieved from: https://www.iksi.ac.rs/rkk_arhiva/rkk_2_2019/rkk_2_2019_dusan_stankovic.pdf
    Retrieved on: Jan. 25, 2022.


Christos Alexopoulos, Danijela Radoičić, Tijana Joncic, Dragan Radosavljević, Marija Mikić Mladenovic, Ivan Milojević

Pages: 76–81

DOI: 10.37392/RapProc.2022.18

Many of the challenges that health organizations face today are different in their work and depend on the regulations of changes in business, competition, but also the insufficient amount of all resources. The main goal of health organizations is to achieve a high quality of service. Today, the health sector is facing competition that leads to the need to gather information about current and potential users of adequate medical services. The efficiency and quality of the services provided by health institutions is largely determined by the qualification of the staff and the quality of the work team. This should be set in the conditions of increased need for better and more accurate diagnosis of various diseases and better treatment of patients. Therefore, the leaders of the organization of the health institution have a difficult task regarding the application of strategic management in order to best organize good working conditions in the team and create success in the treatment of patients. The success that the health institution will achieve depends on the education of employees, but also the application of new technologies, but also the procurement and provision of modern and adequate equipment. All this together can lead to significant and notable results in treating patients and achieving success and progress. An appropriate strategy is needed that will be implemented, but also overcome the challenges of today. That is why human resource management is one of the important tasks for an organization to survive in a changing environment and achieve success. There are three important goals in this. First of all, it is necessary to solve the problem and define the concepts related to the process of human resource planning. The second part is the one related to achieving competitiveness and specificity of the health institution. The third part included continuous training of health workers through scientific research, education and training and adaptation of innovations in health. Based on all the achieved results, it is necessary to draw conclusions and provide guidelines for further work, which indicates the need for continuous monitoring and constant creation of plans for the future.
  1. A. Stanković, M. Pećić, B. Ostojić, “Važnost ljudskih resursa u poslovnom odlučivanju,” Vojno delo, Upravljanje sistemima, vol. 70, br. 7, str. 431 – 446, 2018.
    (A. Stanković, M. Pećić, B. Ostojić, “The importance of human resources in business decision-making,” Mil. work, Syst. Manag., vol. 70, no. 7, pp. 431 – 446, 2018.)
    DOI: 10.5937/vojdelo1807431S
  2. P. Jevtić, Lj. Stošić-Mihajlović, J. Starc, “Kadrovske funkcije top menadžmenta,” u Zborniku radova 10-te Међународнe мајскe конференцијe о стратешком менаџменту (IMCSM 2014) , Bor, Srbija, 2014, str. 533.
    (P. Jevtić, Lj. Stošić-Mihajlović, J. Starc, “Personnel functions of top management,” in Proc. 10th Int. May Conf. Strateg. Manag. (IMCSM 2014), Bor, Serbia, 2014, p. 533.)
    Retrieved from: http://media.sjm06.com/2014/07/Final-IMKSM14_Book-of-Proceedings.pdf
    Retrieved on: Mar. 15, 2022
  3. J. Jaganjac, “Planiranje ljudskih resursa u funkciji uspješnosti na radu,” Tranzicija, vol. 12, br. 25 – 26, str. 137 – 145, 2010.
    (J. Jaganjac, “Human resource planning in the function of success at work,” Transition, vol. 12, no. 25 – 26, pp. 137 – 145, 2010.)
    Retrieved from: https://hrcak.srce.hr/clanak/95200#
    Retrieved on: Mar. 15, 2022
  4. S. Marušić, “Politika ljudskih resursa za europsku konkurenciju”, Privredna kretanja i ekonomska politika, vol. 11, br. 88, str. 29 – 51, 2001.
    (S. Marušić, “Human Resources Policy for European Competition ”, Eco. Trends Eco. Policy, vol. 11, no. 88, pp. 29 – 51, 2001.)
    Retrieved from: https://hrcak.srce.hr/18788
    Retrieved on: Feb. 21, 2022
  5. A. Gračanac, “Klasterizacija u zdravstvu,” PONS-Medicinski časopis, vol. 9, br. 3, str. 114 – 115, Sep. 2012.
    (A. Gračanac, “Clustering in the health care,” PONS-Med. J., vol. 9, no. 3, pp. 114 – 115, Sep. 2012.)
    Retrieved from: https://www.ponsjournal.info/pons-casopis/pons-32.pdf
    Retrieved on: Feb. 21, 2022
  6. M. Čavlin, S. Ignjatijević, G. Čavlin, “Savremeni koncept upravljanja performansama javnih zdravstvenih ustanova u Republici Srbiji,” Vojno delo, Upravljanje sistemima, vol. 67, br. 4. str. 301 – 316, 2015.
    (M. Čavlin, S. Ignjatijević, G. Čavlin, “Modern concepts of performance management of public health institutions in the Republic of Serbia,” Mil. work, Syst. Manag., vol. 67, no. 4. pp. 301 – 316, 2015.)
    DOI: 10.5937/vojdelo1504301C
  7. A. R. Boljević, J. Đ. Premović, V. R. Stojanović-Aleksić, “Ljudski resursi kao faktor kreiranja konkurentskih prednosti turističkih preduzeća,” Tehnika – Menadžment, vol. 69, br. 1, str. 145 – 150, 2014.
    (A. R. Boljević, J. Đ. Premović, V. R. Stojanović-Aleksić, “Human resources as a factor of creating competitive advantages of the tourism enterprises,” Tech. – Manag., vol. 69, no. 1, pp. 145 – 150, 2014.)
    DOI: 10.5937/tehnika1401145B
  8. D. N. Đuričin, S. V. Janošević, Đ. M. Kaličanin, Menadžment i Strategija, 4-to izdanje, Beograd, Srbija: Centar za izdavačku delatnost Ekonomskog fakulteta, 2009, str. 72.
    (D. N. Đuričin, S. V. Janošević, Đ. M. Kaličanin, Management and Strategy, 4th ed., Belgrade, Serbia: Center for Publishing Activities of the Faculty of Economics, 2009, p. 72.)
  9. 15 Active-learning Strategies, USC Center for Excellence in Teaching, Los Angeles (CA), USA.
    Retrieved from: https://cst.usc.edu/teach/strategies/the-inverted-classroom/
    Retrieved on: Mar. 19, 2022
  10. Dobro zdravlje: Cilj 3. Obezbediti zdrav život i promovisati blagostanje za sve ljude svih generacija , Indikatori cilјeva održivog razvoja, Njujork, SAD, 2017.
    (Good health and well-being: Goal 3. Ensure healthy lives and promote well-being for all at all ages , Sustainable Development Goal indicators, New York (NY), USA, 2017.)
    Retrieved from: https://sdg.indikatori.rs/sr-latn/area/good-health-and-well-being/?subarea=SDGUN031201&indicator=031201IND03
    Retrieved on: Mar. 19, 2022
  11. Србија и Агенда 2030: Мапирање националног стратешког оквира у односу на циљеве одрживог развоја , Републички секретаријат за јавне политике, Београд, Србија, 2018.
    (Serbia and Agenda 2030: Mapping the national strategic framework in relation to the goals of sustainable development , Republic Secretariat for Public Policies, Belgrade, Serbia, 2018.)
    Retrieved from: https://rsjp.gov.rs/wp-content/uploads/Agenda-UN-2030.pdf
    Retrieved on: Mar. 19, 2022
  12. T. Radosavljević, “Demografski trendovi i kadrovski potencijal Srbije,” predstavljen na Demografski trendovi i kadrovski potencijal Srbije, Beograd, Srbija, Maj 2013.
    (T. Radosavljević, “Demographic trends and personnel potential of Serbia,” presented at the Demographic trends and personnel potential of Serbia, Belgrade, Serbia, May 2013.)
    Retrieved from: https://www.rlkbg.org.rs/images/docs/demografskitrendovi.pdf
    Retrieved on: Mar. 19, 2022


Bojan Veljkovic, Jelena Aleksandric, Mile Despotovic, Ivan Milojevic, Marija Mikic Mladenovic, Christos Alexopoulos

Pages: 82–85

DOI: 10.37392/RapProc.2022.19

Healthcare professionals have a key role to play in the introduction, application and use of technology in clinical practice. The lack of technical expertise and technological understanding poses a challenge to the quality of health services and probably to the safety, dignity and quality of life of patients. Experience so far speaks of computer literacy, which is the basis of the implementation of the health information system and varies according to gender, age and years of work experience. Determine whether computer literacy depends on gender, age, and years of service. The research was conducted according to the type of cross-sectional study, in the population of health workers employed at the Health Center in Jagodina and the General Hospital in Ćuprija. Yesterday’s sample consisted of 142 respondents. A structured questionnaire was used for data collection, statistical data processing was performed with the computer support of the statistical package for social sciences IBM SPSS Statistics, Version 23 (Statistical Package for Social Sciences). Analysis of variance was used from statistical tests. Results. Sample composed of 78.2% of respondents and 27.2% of respondents; in both groups of respondents, the average achievement on the literacy scale is around 17 points. Age 40 and over is 59%; the first two groups (less than 30 years of age and 30 to 39 years of age) are statistically significantly different from the oldest groups of respondents (F = 4.949, p = 0.003, df = 3). The largest percentage of respondents have a work experience of 10-29 years; younger respondents have more knowledge of computers (F = 7.239, p = 0.000, df = 3). Computer literacy depends on age and years of service.
  1. Vlada Republike Srbije. (Jul 16, 2009). 05 broj 110-4441/2009. Uredba o programu rada, razvoja i organizacije integrisanog zdravstvenog informacionog sistema “E-zdravlje”.
    (Government of Republic of Serbia. (Jul. 16, 2009). 05 no. 110-4441/2009. Regulation on the program of work, development and organization of the integrated health information system “E-healt” .)
    Retrieved from: http://pravni-skener.org/pdf/sr/baza_propisa/65.pdf
    Retrieved on: Mar. 05, 2022
  2. Internet of Things: Evolutions and Innovations, vol. 4, N. Bouhaï, I. Saleh, Eds., Hoboken (NJ), USA: John Wiley and Sons, 2017.
    Retrieved from: https://books.google.rs/books?id=MXs6DwAAQBAJ&printsec=frontcover&hl=sr&source=gbs_ge_summary_r&cad=0#v= onepage&q&f=false
    Retrieved on: Mar. 05, 2022
  3. J. Dorrier, “Telepresence Robots Invade Hospitals – Doctors Can Be Anywhere, Anytime,” Singularity Hub, Dec. 4, 2012.
    Retrieved from: https://singularityhub.com/2012/12/04/telepresence-robots-invade-hospitals-doctors-can-be-anywhere-anytime/
    Retrieved on: Mar. 05, 2022
  4. Ministarstvo zdravlja Republike Hrvatske. (Srpanj 19, 2012). NN 86/2012, (1980). Plan zdravstvene zastite Republike Hrvatske.
    (Ministry of Health of the Republic of Croatia. (Jul. 19, 2012).NN 86/2012, (1980). Health care plan of the Republic of Croatia.)
    Retrieved from: https://narodne-novine.nn.hr/clanci/sluzbeni/2012_07_86_1980.html
    Retrieved on: Mar. 05, 2022
  5. C. R. Jaén et al., “Methods for evaluating practice change toward a patient-centered medical home,” Ann. Fam. Med., vol. 8, suppl. 1, pp. S9 – S20, May 2010.
    DOI: 10.1370/afm.1108
    PMid: 20530398
    PMCid: PMC2885721
  6. B. Jerbic, G. Nikolic, D. Chudy, M. Svaco, B. Sekoranja, “Robotic Application in Neurosurgery Using Intelligent Visual and Haptic Interaction,” Int. J. Simul. Model., vol. 14, no. 1, pp. 71 – 84, Feb. 2015.
    DOI: 10.2507/IJSIMM14(1)7.290
  7. E. Coiera, “Communication systems in healthcare,” Clin. Biochem. Rev., vol. 27, no. 2, pp. 89 – 98, May 2006.
    PMid: 17077879
    PMCid: PMC1579411
  8. R. Haux, “Health information systems – past, present, future,” Int. J. Med. Inform., vol. 75, no. 3 – 4, pp. 268 – 281, Mar. – Apr. 2006.
    DOI: 10.1016/j.ijmedinf.2005.08.002
    PMid: 16169771
  9. R. J. Holden, B. T. Karsh, “The technology acceptance model: its past and its future in health care,” J. Biomed. Inform., vol. 43, no. 1, pp. 159 – 172, Feb. 2010.
    DOI: 10.1016/j.jbi.2009.07.002
    PMid: 19615467
    PMCid: PMC2814963
  10. Health technology assessment, WHO, Geneva, Switzerland.
    Retrieved from: https://www.who.int/health-topics/health-technology-assessment#tab=tab_1
    Retrieved on: Mar. 05, 2022
  11. Z. Iliyasu, I. S. Abubakar, M. Kabir, S. M. Abbas, “Computing knowledge, attitude and skills among healthcare professionals in Aminu Kano Teaching Hospital, Nigeria,” Niger. J. Med., vol. 14, no. 2, pp. 200 – 205, Apr. – Jun. 2005.
    PMid: 16083246
  12. F. Sukums et al., “Health workers’ knowledge of and attitudes towards computer applications in rural African health facilities,” Glob. Health Action, vol. 7, no. 1, 24534, Oct. 2014.
    DOI: 10.3402/gha.v7.24534
    PMid: 25361721
    PMCid: PMC4212075
  13. M. K. Kipturgo, L. W. Kivuti-Bitok, A. K. Karani, M. M. Muiva, “Attitudes of nursing staff towards computerisation: a case of two hospitals in Nairobi, Kenya,” BMC Med. Inform. Decis. Mak., vol. 14, 35, Apr. 2014.
    DOI: 10.1186/1472-6947-14-35
    PMid: 24774008
    PMCid: PMC4045038
  14. G. Brumini, I. Ković, D. Zombori, I. Lulić, M. Petrovečki, “Nurses’ attitudes towards computers: cross sectional questionnaire study,” Croat. Med. J., vol. 46, no. 1, pp. 101 – 104, Feb. 2005.
    PMid: 15726683
  15. N. Kaya, “Factors affecting nurses’ attitudes toward computers in healthcare,” CIN Comput. Inform. Nurs., vol. 29, no. 2, pp. 121 – 129, Feb. 2011.
    DOI: 10.1097/NCN.0b013e3181f9dd0f
    PMid: 20975539
  16. D. Milutinović, E. Ćirić, D. Simić, “Stavovi medicinskih sestara o upotrebi računara u zdravstvenoj zaštiti i kompjuterska pismenost,” PONS - Medicinski časopis, vol. 15, br. 1, str. 21 – 27, 2018.
    (D. Milutinović, E. Ćirić, D. Simić, “Nurses’ attitudes about the use of computers in health care and computer literacy,” PONS – Med. J., vol. 15, no. 1, pp. 21 – 27, 2018.)
    DOI: 10.5937/pomc15-16776
  17. A. Brodt, J. H. Strange. “Nurses’ attitudes toward computerisation in a Midwestern community hospital,” Comput. Nurs., vol. 4, no. 2, pp. 82 – 86, Mar. – Apr. 1986.
    PMid: 3633754
  18. N. Sultana, “Nurses’ attitudes towards computerization in clinical practice,” J. Adv. Nurs., vol. 15, no. 6, pp. 696 – 702, Jun. 1990.
    DOI: 10.1111/j.1365-2648.1990.tb01893.x
    PMid: 2365910
  19. S. M. Awol et al., “Health Professionals’ Readiness and Its Associated Factors to Implement Electronic Medical Record System in Four Selected Primary Hospitals in Ethiopia,” Adv. Med. Educ. Pract., vol. 11, pp. 147 – 154, Feb. 2020.
    DOI: 10.2147/AMEP.S233368
    PMid: 32110135
    PMCid: PMC7041609

Medical Imaging


A. Galanopoulou, A. Katsigiannis, A. Bakas, C. Kantsos, C. Michail, K. Ninos, L. Lavdas, V. Koukou, N. Martini, I. Valais, G. Fountos, I. Kandarakis, N. Kalyvas

Pages: 86–90

DOI: 10.37392/RapProc.2022.20

X-rays are used in medical imaging to acquire information from inside the human body. The quality of the information is affected by the tube voltage responsible for X-ray penetration and contrast as well as the tube load which affects image noise. Another important part is the X-ray detector. It consists either of a scintillator component coupled to semiconductor (indirect detection) or only of a semiconductor part that directly converts the X-rays to electron-hole pairs which impinge onto an electronic circuit (direct detection). An intermediate solution is the use of a Computed Radiography cassette (CR) which has a scintillator with introduced defaults. These defaults act as traps for the radiation excited electrons and prohibit the spontaneous optical photon generation. The cassette is then excited by a LASER beam provoking the de-excitation of the trapped information carriers. The optical photons generated are collected by a photocathode digitized and presented as an image. The image is further manipulated in an automated manner depending upon the examination. The purpose of this work is to examine the effect of the automated software manipulation to the image quality metrics. A theoretical model based in the linear cascade system theory was utilized. The model has considered the incident X-rays, their absorption in the CR, the generation and trap of electrons, the optical photon generation emission and capture at the photocathode. The model predicted the electrons per incident X-ray as well as the pre-sampled Modulation Transfer Function (MTF) which defines the spatial resolution of the system. The data needed for the model were obtained from literature. The calculation of optical photon transport was done by an analytical solution of Boltzmann diffusion equation. In order to find the effect of the software a PTW edge phantom was irradiated by a BMI GMM X-ray generator and imaged by a FujiFilm ST-VI cassette and a Capsule-X scanner. The images were shown in ‘chest’, ‘patella’ and ‘PDR’ mode to simulate a high latitude, a high contrast and a generic imaging window respectively. The MTF was estimated by Fourier transforming a differentiated edge profile. The contrast was obtained by irradiating the Artinis CDRAD low contrast PMMA phantom and 3Dprinted PLA phantom, both for ‘breast’ imaging conditions. The data were processed through ImageJ and Octave free software. The best MTF agreement was found for patella imaging conditions. It was found that the image contrast was affected by the phantom material. The PMMA phantom showed better agreement with the experimental results. Since image quality parameters are phantom material based, each new phantom should have a reference image.
  1. H. Aichinger, J. Dierker, S. Joite-Barfuẞ, M. Säbel, “Principles of X-Ray Imaging,” in Radiation Exposure and Image Quality in X-ray Diagnostic Radiology: Physical Principles and Clinical Applications , 2nd ed., Berlin Heidelberg, Germany: Springer-Verlag, 2012, ch. 1, pp. 3 – 7.
    DOI: 10.1007/978-3-642-11241-6_1
  2. I. S. Kandarakis, “Luminescence in medical image science,” J. Lumin., vol. 169, part B, pp. 553 – 558, Jan. 2016.
    DOI: 10.1016/j.jlumin.2014.11.009
  3. M. Rabbani, R. Shaw, R. Van Metter, “Detective quantum efficiency of imaging systems with amplifying and scattering mechanisms,” J. Opt. Soc. Am. A, vol. 4, no. 5, pp. 895 – 901, May 1987.
    DOI: 10.1364/josaa.4.000895
    PMid: 3598742
  4. M. Rabbani, R. Van Metter, “Analysis of signal and noise propagation for several imaging mechanisms,” J. Opt. Soc. Am. A, vol. 6, no. 8, pp. 1156 – 1164, Aug. 1989.
    DOI: 10.1364/JOSAA.6.001156
  5. R. M. Nishikawa, M. J. Yaffe, “Model of the spatial-frequency-dependent detective quantum efficiency of phosphor screens,” Med. Phys., vol. 17, no. 5, pp. 894 – 904, Sep. 1990.
    DOI: 10.1118/1.596583
  6. I. A. Cunnigham, M. S. Westmore, A. Fenster, “A spatial-frequency dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,” Med. Phys., vol. 21, no. 3, pp. 417 – 427, Mar. 1994.
    DOI: 10.1118/1.597401
  7. H. K. Kim, S. M. Yun, J. S. Ko, G. Cho, T. Graeve, “Cascaded modeling of pixelated scintillator detectors for x-ray imaging,” IEEE Trans. Nucl. Sci., vol. 55, no. 3, pp. 1357 – 1366, Jun. 2008.
    DOI: 10.1109/TNS.2008.919260
  8. C. M. Michail et al., “Experimental and theoretical evaluation of a high resolution CMOS based detector under x-ray imaging conditions,” IEEE Trans. Nucl. Sci., vol. 58, no. 1, pp. 314 – 322, Feb. 2011.
    DOI: 10.1109/TNS.2010.2094206
  9. P. Liaparinos, N. Kalyvas, I. Kandarakis, D. Cavouras, “Analysis of the imaging performance in indirect digital mammography detectors by linear systems and signal detection models,” Nucl. Instrum. Methods Phys. Res. B, vol. 697, pp. 87 – 98, Jan. 2013.
    DOI: 10.1016/j.nima.2012.08.014
  10. S. Vedantham, A. Karellas, “Modeling the performance characteristics of computed radiography (CR) systems,” IEEE Trans. Med. Imaging, vol. 29, no. 3, pp. 790 – 806, Mar. 2010.
    DOI: 10.1109/TMI.2009.2036995
    PMid: 20199915
    PMCid: PMC5228607
  11. S. M. Kengyelics, J. H. Launders, A. R. Cowen, “Physical imaging performance of a compact computed radiograpghy acquisition device,” Med. Phys., vol. 25, no. 3, pp. 354 – 360, Mar. 1998.
    DOI: 10.1118/1.598212
  12. I. Kapetanakis, G. Fountos, C. Michail, I. Valais, N. Kalyvas, “3D printing x-ray quality control phantoms. A low contrast paradigm,” J. Phys.: Conf. Ser., vol. 931, 012026, 2017.
    DOI: 10.1088/1742-6596/931/1/012026
  13. Simulation of X-ray spectra, on-line tool for the simulation of x-ray spectra , Siemens Healthineers, Erlangen, Germany.
    Retrieved from: https://www.oem-products.siemens-healthineers.com/x-ray-spectra-simulation
    Retrieved on: Mar. 15, 2019
  14. R. Nowotny, XMuDat: Photon attenuation data on PC version 1.0.1, IAEA Nuclear Data Section, Vienna, Austria, 1998.
    Retrieved from: https://www-nds.iaea.org/publications/iaea-nds/iaea-nds-0195.htm
    Retrieved on: Mar. 15, 2019
  15. W. Rasband, ImageJ version 1.47h, National Institutes of Health, Bethesda (MD), USA, 2012.
    Retrieved from: https://imagej.nih.gov/ij/
    Retrieved on: Mar. 15, 2019