Vol. 6, 2021


Primary DNA damage in brain of mice exposed to anaesthetic isoflurane and ionizing irradiation in dose of 1 or 2 Gy

Vesna Benković, Anica Horvat Knežević, Mirta Milić

Pages: 1-5

DOI: 10.37392/RapProc.2021.01

Radiotherapy (RT) is still a golden procedure for brain tumour therapy. Ionizing radiation (IR) is IARC carcinogen of group 1 and the use of novel RT techniques increased the precise targeting, dose delivery, localized dose exposure and lowered the number of necessary IR exposures. The use of volatile anaesthetics (VA) in RT helped in patients’ immobility and RT targeting either due to the type of the procedure or due to different patients’ conditions (claustrophobia, anxiety, etc.), considering the increase in brain tumour incidence among adults and children. Isoflurane (ISO) among VA is commonly used due to fast sedation and stable patients’ conditions. Although considered safe, there are reports about its genotoxicity and mutagenicity in vitro, in vivo and in clinical studies but with no consistent and even contradictory results, mostly considering the toxic and protective effects in brain cells. Combined VA-IR effects have not been examined so far, so we decided to test single exposure on brain cells in vivo. 120 Swiss albino male mice, were exposed to 2.4 % ISO® for 2 hours or to 1 or 2 Gy whole body γ-IR ( 60 Co, dose rate 1.88 Gy/min) or their combination. Frontal lobe brain samples (as the most sensitive IR damaging parts) were taken immediately (0h), 2, 6 and 24h from the exposure and primary DNA damage was evaluated using alkaline comet assay. In non-irradiated ISO samples slightly higher damage level did not significantly differ from control in all time points. IR only samples had significantly higher damage, with the dose increase. In both combined exposures, after 24 hours, ISO significantly decreased damage levels, compared to IR samples and demonstrated its influence on increased velocity repair of the rest of IR damage. Adaptive response, by activating DNA repair mechanisms and the levels of reactive free oxygen radicals’ scavengers are possible mechanism of isoflurane protective effect but further research should be focused on determining the exact mechanisms.
  1. P. Jaloszyński, et al., "Genotoxicity of inhalation anesthetics halothane and isoflurane in human lymphocytes studied in vitro using the comet assay," Mutat. Res., vol. 439, no. 2, pp. 199-206, Feb. 1999.
    DOI: 10.1016/s1383-5718(98)00195-8
    PMid: 10023059
  2. L. Karabiyik, et al., "Comparison of genotoxicity of sevoflurane and isoflurane in human lymphocytes studied in vivo using the comet assay," Mutat. Res., vol. 492, no. 1-2, pp. 99-107. May 2001.
    DOI: 10.1016/s1383-5718(01)00159-0
    PMid: 11377249
  3. M. G. Braz, et al., "Genotoxicity, cytotoxicity and gene expression in patients undergoing elective surgery under isoflurane anesthesia," Mutagenesis, vol. 26, no. 3, pp. 415-420. May 2011.
    DOI: 10.1093/mutage/geq109
    PMid: 21257718
    PMCid: PMC3081333
  4. Radiation , vol. 100 D, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, IARC, Lyon, France, 2012.
    Retrieved from: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Radiation-2012
    Retrieved on: May 27, 2021
  5. V. Benkovic, et al., "DNA damage assessment in peripheral blood of Swiss albino mice after combined exposure to volatile anesthetics and 1 or 2 Gy radiotherapy in vivo," Int. J. Radiat. Biol., vol. 97, no. 10, pp. 1425-1435. Aug. 2021.
    PMid: 34328801
    DOI: 10.1080/09553002.2021.1962565
  6. Radiology dose fractionation , 3rd ed., The Royal College of Radiologist, London, UK, 2019.
    Retrieved from: https://www.rcr.ac.uk/publication/radiotherapy-dose-fractionation-third-edition
    Retrieved on: May 1, 2021
  7. J. A. Campagna, K. W. Miller, S. A. Forman, "Mechanisms of actions of inhaled anesthetics," N. Engl. J. Med., vol. 348, no. 21, pp. 2110 - 2124, May 2003.
    DOI: 10.1056/NEJMra021261
    PMid: 12761368
  8. J. M. Borras et al., "Estimating the number of fractions by tumour site for European countries in 2012 and 2025: An ESTRO-HERO analysis," Radiother. Oncol., vol. 126, no. 2, pp. 198 - 204, Feb. 2018.
    DOI: 10.1016/j.radonc.2017.11.009
    PMid: 29198408
  9. In vivo mammalian alkaline comet assay , OECD guideline for the testing of chemicals TG 489, OECD, Paris, France, 2014.
    Retrieved from: https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd-tg489-2014.pdf
    Retrieved on: Apr. 11, 2021
  10. M. Neri et al., "Worldwide interest in the comet assay: a bibliometric study," Mutagenesis, vol. 30, no. 1, pp. 155 - 163, Jan. 2015.
    DOI: 10.1093/mutage/geu061
    PMid: 25527738
  11. M. Milić et al., "The Influence of Individual Genome Sensitivity in DNA Damage Repair Assessment in Chronic Professional Exposure to Low Doses of Ionizing Radiation," in Selected Topics in DNA Repair, C. C. Chen, Eds., Rijeka, Croatia: InTech, 2011, ch. 19, pp. 437 - 464.
    DOI: 10.5772/20814
  12. A. Collins, M. Milic, S. Bonassi, M. Dusinska, "The comet assay in human biomonitoring: Technical and epidemiological perspectives," Mutat. Res., vol. 843, pp. 1 - 2, Jul. 2019.
    DOI: 10.1016/j.mrgentox.2019.06.002
    PMid: 31421730
  13. M. Milić et al., "The hCOMET project: International database comparison of results with the comet assay in human biomonitoring. Baseline frequency of DNA damage and effect of main confounders," Mutat. Res. vol. 787, 108371, Jan.-Jun. 2021.
    DOI: 10.1016/j.mrrev.2021.108371
    PMid: 34083035
  14. S. Chiao, Z. Zuo, "A double-edged sword: volatile anesthetic effects on the neonatal brain," Brain Sci., vol. 4, no. 2, pp. 273 - 294, Apr. 2014.
    DOI: 10.3390/brainsci4020273
    PMid: 24961761
    PMCid: PMC4101477
  15. K. N. Loganovsky, K. L. Yuryev, "EEG patterns in persons exposed to ionizing radiation as a result of the chernobyl accident. Part 2: quantitative EEG analysis in patients who had acute radiation sickness," J. Neuropsychiatry Clin. Neurosci., vol. 16, no. 1, pp. 70 - 82, Feb. 2004.
    DOI: 10.1176/jnp.16.1.70
    PMid: 14990762
  16. S. Baluchamy et al., "Reactive oxygen species mediated tissue damage in high energy proton irradiated mouse brain," Mol. Cell Biochem., vol. 360, no. 1 - 2, pp. 189 - 195, Jan. 2012.
    DOI: 10.1007/s11010-011-1056-2
    PMid: 21948272
  17. Croatian Parliament. (Oct. 18, 2017). OG 102/2017. Animal Protection Act.
    Retrieved from: http://www.mvep.hr/files/file/dokumenti/prevodenje/zakoni/25-Zakon-o-za%C5%A1titi-%C5%BEivotinja--NN-102-17-ENG.pdf
    Retrieved on: May 21, 2021
  18. Hrvatski sabor. (Maj 8, 2013). NN 55/13. Pravilnik o zaštiti životinja koje se koriste u znanstvene svrhe . (Croatian Parliament. (May 8, 2013). OG 55/13. Ordinance on the protection of animals used for scientific purposes .)
    Retrieved from: http://www.veterinarstvo.hr/default.aspx?id=64
    Retrieved on: May 21, 2021
  19. The European Parliament and the Council of European Union. (Sep. 22, 2010). Directive 2010/63/EU on the protection of animals used for scientific purposes .
    Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF
    Retrieved on: May 21, 2021
  20. D. J. Gaertner, T. M. Hallman, F. C. Hankenson, M. A. Batchelder, "Anesthesia and Analgesia for Laboratory Rodents," in Anesthesia and Analgesia in Laboratory Animals, R. E. Fish, M. J. Brown, P. J. Danneman, A. Z. Karas, Eds., 2nd ed., London, UK: Academic Press, 2008, ch. 10, pp. 240 - 261.
    Retrieved from: http://library.lol/main/5C058EB5162F03311F861DE2A87DDAF4
    Retrieved on: May 25, 2021
  21. B.A. Siddiqui, P. Y. Kim, Anesthesia Stages, Treasure Island (FL), USA: StatPearls Publishing, 2021.
    PMid: 32491528
  22. G. G. Nair, C. K. Nair, "Protection of cellular DNA and membrane from γ-radiation-induced damages and enhancement in DNA repair by sesamol," Cancer Biother. Radiopharm., vol. 25, no. 6, pp. 629 - 635, Dec. 2010.
    DOI: 10.1089/cbr.2010.0803
    PMid: 21204756



Mykola Strilchuk, Igor Maliuk, Ivan Mironyuk, Hanna Vasylyeva, Volodymyr Tryshyn, Maryna Hryhorenko, Oleksandr Zhukov, Khrystyna Savka

Pages: 6-10

DOI: 10.37392/RapProc.2021.02

The aim of this work is the application of well-known adsorbents for the separation of 90Sr, 90Y, and 90Zr radionuclides. Three basic types of adsorbents have been studied: Dowex HCR S/S cation exchange resin, Dowex 1x8 anion exchange resin, and titanium dioxide with a chemically modified surface. The most effective adsorbent for the separation of strontium, yttrium, and zirconium ions was titanium dioxide with a chemically modified surface. This adsorbent selectively absorbs zirconium cations against the background of excess strontium and yttrium ions. The separation takes place in 2% HNO3 at initial concentrations of the studied cations 10 ng/ml and 100 ng/ml. Analysis of the initial mixture and the mixture after separation was conducted using ICP-MS “Element-2” with argon plasma. Age of 90Sr-90Y β- -source (approximately 30.2 years old) was measured using the method of the chemical separation of 90Sr and 90Zr by the titanium dioxide and following calculation of the 90Zr/90Sr ratio. The age of 90Sr-90Y β - -source was calculated as 31.9 ±1 year. The combination of liquid scintillation counting of 90Sr and ICP-MS analysis was proposed as an alternative method of determination of the 90Zr/ 90Sr ratio. It was shown, that both methods provide similar results in radio chronometry of 90Sr-contained compound, i.e. age-dating of liquid 90Sr-90Y β- -source, and could validate each other.
  1. K. Mayer, M. Wallenius, T. Fanghänel, “Nuclear forensic science — from cradle to maturity,” J. Alloys Compd., vol. 444 – 445, pp. 50 – 56, Oct. 2007.
    DOI: 10.1016/j.jallcom.2007.01.164
  2. V. R. van Maris et al., “The behavior of parent and daughter nuclides in aerosols released in radiological dispersion events: a study of a SrTiO3 source,” J. Raman Spectrosc., vol. 48 no. 4, pp. 549 – 559, Apr. 2017.
    DOI: 10.1002/jrs.5076
  3. N. Kavasi, S. K. Sahoo, H. Arae, T. Aono, Z. Palacz, “Accurate and precise determination of 90Sr at femtogram level in IAEA proficiency test using Thermal Ionization Mass Spectrometry,” Sci. Rep., vol. 9, no. 1, 16532, Nov. 2019.
    DOI: 10.1038/s41598-019-52890-3
    PMid: 31712653
    PMCid: PMC6848187
  4. S. C. Wilschefski, M. R. Baxter, “Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects,” Clin. Biochem. Rev., vol. 40, no. 3, pp. 115 – 133, Aug. 2019.
    DOI: 10.33176/AACB-19-00024
    PMid: 31530963
    PMCid: PMC6719745
  5. W. R. Hendee, E. R. Ritenour, Medical Imaging Physics, 4th ed., New York (NY), USA: J. Wiley and Sons, 2002, p. 353.
    DOI: 10.1002/0471221155
  6. D. Mc Alister, “Options for Separation and Measurement of 89Sr/90Sr,” presented at the 63rd Conf. Radiobioassay and Radiochemical Measurements (RRMC), Portland (ME), USA, May 2018.
  7. Principles and Applications of Liquid Scintillation Counting , National Diagnostics, Atlanta (GA), USA, 2004.
    Retrieved from: https://ehs.psu.edu/sites/ehs/files/lsc_theory_of_operation_part_1.pdf
    Retrieved on: Jan. 10, 2021
  8. P. Gaca, D. Reading, P. Warwick, “Application of multiple quench parameters for confirmation of radionuclide identity in radioanalytical quality control,” J. Radioanal. Nucl. Chem., vol. 322, no. 3, pp. 1383 – 1390, Dec. 2019.
    DOI: 10.1007/s10967-019-06788-z
  9. H.Vasylyeva et al., “Adsorption of zirconium ions by X-type zeolite,” Biointerface Res. Appl. Chem., vol. 11, no. 5, pp. 13421 – 13431, Feb. 2021.
    DOI: 10.33263/BRIAC115.1342113431
  10. H. V. Vasylyeva et al., “Radiochemical studies of state of lanthanum micro amounts in water solution,” J. Mol. Liq., vol. 118, no. 1 – 3 pp. 41 – 44, Apr. 2005.
    DOI: https://www.doi.org.10.1016/j.molliq.2004.07.008
  11. S. Yang et al.,Crystal shape engineering of anatase TiO2 and its biomedical applications,” CrystEngComm, vol. 17, no. 35, pp. 6617 – 6631, Sep. 2015.
    DOI: https://www.doi.org.10.1039/C5CE00804B
  12. I.F. Mironyuk, I. M. Mykytyn, O. Ye. Kaglyan, D. I. Gudkov, H. V. Vasylyeva, “90-Sr Adsorption From The Aquatic Environment Of Chornobyl Exclusion Zone By Chemically Enhanced TiO2,” Nucl. Phys. At. Energy, vol. 21, no. 4, p. 347, 2020.
    DOI: 10.15407/jnpae2020.04.347
  13. H. Vasylyeva, I. Mironyuk, I. Mykytyn, K. Savka, Equilibrium studies of yttrium adsorption from aqueous solutions by titanium dioxide,” Appl. Radiat. Isot., vol. 168, 109473, Feb. 2021.
    DOI: 10.1016/j.apradiso.2020.109473
    PMid: 33658128
  14. H. Vasylyeva, I. Mironyuk, I. Mykytyn,Аdsorption of Co 2+ and radioactive 60Со by mesoporous TiO2 ,” Chem. Phys. Technol. Surf., vol. 10, no. 4, pp. 446 – 457, Dec. 2019.
    DOI: 10.15407/hftp10.04.446
  15. I. Mironyuk, I. Mykytyn, H. Vasylyeva, K. Savka, “Sodium-modified mesoporous TiO2: Sol-gel synthesis, characterization and adsorption activity toward heavy metal cations,” J. Mol. Liq., vol. 316, 113840, Oct. 2020.
    DOI: 10.1016/j.molliq.2020.113840
  16. H. Vasylyeva, I. Mironyuk, I. Mykytyn, N. Danyliuk, “Adsorption of Barium and Zinc Ions by Mesoporous TiO2 with Chemosorbed Carbonate Groups,” Phys. Chem. Solid State, vol. 20, no. 3, p. 282, Oct. 2019.
    DOI: 10.15330/pcss.20.3.282-290
  17. H. Vasylyeva et al., “Application of Titanium Dioxide for Zirconium Ions Adsorption and Separation from a Multicomponent Mixture,”Phys. Chem. Solid State, vol. 22, no. 3, pp. 460 – 469, Aug. 2021.
    DOI: 10.15330/pcss.22.3.460-469
  18. M. M. S. Ali, E. A. Abdel-Galil, M. M. Hamed, “Removal of strontium radionuclides from liquid scintillation waste and environmental water samples,” Appl. Radiat. Isot., vol. 166, 109357, Dec. 2020.
    DOI: 10.1016/j.apradiso.2020.109357
    PMid: 32755756
  19. A. Surrao et al., “Improving the separation of strontium and barium with Sr Resin using chelating eluent solutions,” J. Radioanal. Nucl. Chem ., vol. 319, no. 3, pp. 1185 – 1192, Mar. 2019.
    DOI: 10.1007/s10967-019-06432-w
  20. K. Kołacińska, Z. Samczyński, J. Dudek, A. Bojanowska-Czajka, M. Trojanowicz, “A comparison study on the use of Dowex 1 and TEVA-resin in determination of 99Tc in environmental and nuclear coolant samples in a SIA system with ICP-MS detection,” Talanta, vol. 184, pp. 527 – 536, Jul. 2018.
    DOI: 10.1016/j.talanta.2018.03.034
    PMid: 29674079
  21. E. P. Horwitz, D. R. McAlister, A. H. Thakkar, “Synergistic enhancement of the extraction of trivalent lanthanides and actinides by tetra-(n -octyl) diglycolamide from chloride media,”Solvent Extr. Ion Exch., vol. 26, no. 1, pp. 12 – 24, 2008.
    DOI: 10.1080/07366290701779423
  22. K. M. Mackay, R. A. Mackay, W. Henderson, Introduction to modern inorganic chemistry, 5th ed., London, UK: Blackie Academic & Professional an imprint of Chapman and Hall, 1996.
  23. S. Agostinelli et al., “Geant4 — a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A vol. 506, no. 3, pp. 250 – 303, Jul. 2003.
    DOI: 10.1016/S0168-9002(03)01368-8


Gergana Simeonova, Boyan Todorov, Valentina Lyubomirova

Pages: 11-15

DOI: 10.37392/RapProc.2021.03

The isotope 18F is one of the attractive positron emitters with commercial cyclotron production by the following nuclear reaction18O (p, n) 18F. Basically, the radionuclide 18F is used for the production of 18F-labeled radiopharmaceuticals applied in positrone-emission tomography (PET). The most widely used among them is 18F-fluorodeoxy-glucose (18F-FDG). 18F-FDG as glucose analog can be used to assess the metabolism in the brain and heart, and also to study malignancies. It plays an important role in the planning of radiation therapy for pathologies such as lung cancer, head and neck cancer, colon cancer. 18F-fluorodeoxy-glucose has been used in recent years as a prosthetic group for indirect radiofluorination of biomolecules such as peptides and proteins under relatively mild reaction conditions, which allows the development and synthesis of more specific PET radio tracers. A method has been developed to directly modify 18F-FDG in the clinic environment and equipment. Simple and reliable procedure was done with formation of an oxime chemical bond with a bifunctional compound. The optimal reaction conditions were carried out by varying the buffer, temperature and catalyst used. The progress of the reaction is monitored by radio TLС - chromatography.
  1. M. R. Kilbourn, Fluorine-18 labeling of radiopharmaceuticals, Washington DC, USA: The National Academies Press, 1990.
    Retrieved from: https://www.nap.edu/catalog/20467/fluorine-18-labeling-of-radiopharmaceuticals
    Retrieved on: Jan. 30, 2021
  2. A. O. Valdivia, J. L. López, Y. M. Vargas-Rodríguez, O. C. González, “Producción de radiofármacos para tomografía por emisión de positrones (PET) y su aplicación en el diagnóstico de diversas enfermedades,” Educación Química, vol. 27. núm. 4, páginas 292 – 299, Oct. 2016. ( A. O. Valdivia, J. L. López, Y. M. Vargas-Rodríguez, O. C. González, “Production of radiopharmaceuticals for positron emission tomography (PET) and their application in the diagnosis of various diseases,” Chem. Education, vol. 27, no. 4, pp. 292 – 299, Oct. 2016.)
    Retrieved from: https://www.elsevier.es/es-revista-educacion-quimica-78-articulo-produccion-radiofarmacos-tomografia-por-emision-S0187893X16300076
    Retrieved on: Jan. 30, 2021
  3. Y. Chain, L. Illanes, Radiofármacos en medicina nuclear: fundamentos y aplicación clínica , La Plata, Argentina: EDULP, 2015. (Y. Chain, L. Illanes, Radiopharmaceuticals in nuclear medicine: fundamentals and clinical application , La Plata, Argentina: EDULP, 2015.)
    Retrieved from: http://sedici.unlp.edu.ar/bitstream/handle/10915/46740/Documento_completo.pdf?sequence=1
    Retrieved on: Aug. 13, 2021
  4. D. L. De Guevara, “Utilidad clínica oncológica y no oncológica del PET/CT,” Rev. Med. Clin. Condes, vol. 24, núm. 1, páginas 78 – 87, Enero 2013. (D. L. De Guevara, “Clinical utility of oncological and no oncological PET/CT,” Rev. Med. Clin. Condes, vol. 24, no. 1, pp. 78 – 87, Jan. 2013.)
    Retrieved from: https://www.elsevier.es/es-revista-revista-medica-clinica-las-condes-202-articulo-utilidad-clinica-oncologica-no-oncologica-S0716864013701329?referer=coleccion
    Retrieved on: Aug. 13, 2021
  5. M. A. Áliva-Rodríguez, H. Alva-Sánchez, “Radiofármacos para PET, una nueva perspectiva de la medicina nuclear molecular en México,” El Residente, vol. 5, núm. 3, páginas 103 – 110, Sep.-Dic. 2010. (M. A. Áliva-Rodríguez, H. Alva-Sánchez, “Radiopharmaceuticals for PET, a new perspective on molecular nuclear medicine in Mexico,” The Resident , vol. 5, no. 3, pp. 103 – 110, Sep.-Dec. 2010.)
    Retrieved from: https://www.medigraphic.com/pdfs/residente/rr-2010/rr103c.pdf
    Retrieved on: Aug. 13, 2021
  6. M. Wagner, F. Wuest, “The Radiopharmaceutical Chemistry of Fluorine-18: Electrophilic Fluorinations,” in Radiopharmaceutical Chemistry, J. S. Lewis, A. D. Windhorst, B. M. Zeglis, Eds., 1st ed., Cham, Switzerland: Springer, 2019, part II, pp. 285 – 295.
    Retrieved from: http://library.lol/main/EDAC45121994C3798BB6B701AFD5F3F5
    Retrieved on: Aug. 13, 2021
  7. M. Reivich et al., “The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man,” Circ. Res., vol. 44, no. 1, pp. 127 – 137, Jan. 1979.
    Retrieved from: https://www.ahajournals.org/doi/pdf/10.1161/01.RES.44.1.127
    Retrieved on: Aug. 13, 2021
  8. A. M. Rodríguez-Sánchez, “Establecimiento de controles de calidad para 18F-FDG sintetizada por hidrolisis básica y evaluación de dosis de cristalino de POE de radiofarmacia PET con EPD, OSL y TLD,” Tesis de maestría en ciencias, Instituto Balseiro, Física médica, San Carlos de Bariloche, Argentina, 2016. (A. M. Rodríguez-Sánchez, “Quality controls establishment for 18 F-FDG synthesidez by basic hydrolysis and evaluation of lens of the eyes doses of POE of radiopharmacy PET with EPD, OSL and TLD,” M.Sc. thesis, Balseiro Institute, Medical Physics, San Carlos de Bariloche, Argentina, 2016.)
    Retrieved from: http://ricabib.cab.cnea.gov.ar/579/1/1Rodriguez_S%C3%A1nchez.pdf
    Retrieved on: Jan. 30, 2021
  9. K. Hamacher, H. H. Coenen, G. Stöcklin , “Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution,” J. Nucl. Med., vol. 27, no. 2, pp. 235 – 238, Feb. 1986.
    Retrieved from: https://jnm.snmjournals.org/content/jnumed/27/2/235.full.pdf
    Retrieved on: Jan. 30, 2021
  10. M. C. López, “Procedimiento de fluoración para la síntesis de 2-[ 18F]-fluoro-2-desoxi-D-glucosa,” Patente ES 2347165 T3, España, Agosto 15, 2007. (M. C. López, “Fluorination procedure for the synthesis of 2- [18F] -fluoro-2-deoxy-D-glucose,” Patent ES 2347165 T3, Spain, Aug. 15, 2007.)
    Retrieved from: https://patentimages.storage.googleapis.com/8a/59/46/493718a8dd6706/ES2347165T3.pdf
    Retrieved on: Jan. 30, 2021
  11. F. Wuest, C. Hultsch, M. Berndt, R. Bergmann, “Direct labelling of peptides with 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG),Bioorg. Med. Chem. Lett., vol. 19, no. 18, pp. 5426 – 5428, Sep. 2009.
    Retrieved from: https://sci-hub.se/10.1016/j.bmcl.2009.07.108
    Retrieved on: Mar. 20, 2021
  12. Z. Li, P. S. Conti, “Radiopharmaceutical chemistry for positron emission tomography,” Adv. Drug Deliv. Rev., vol. 62, no. 11, pp. 1031 – 1051, Aug. 2010.
    Retrieved from: https://sci-hub.se/10.1016/j.addr.2010.09.007
    Retrieved on: Mar. 20, 2021
  13. O. Jacobson, X. Chen, “PET designated fluoride-18 production and chemistry,” Curr. Top. Med. Chem., vol. 10, no. 11, pp. 1048 – 1059, 2010.
    Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617500/pdf/nihms-454834.pdf
    Retrieved on: Mar. 20, 2021
  14. D. Larsen et al., “Exceptionally rapid oxime and hydrazone formation promoted by catalytic amine buffers with low toxicity,” Chem. Sci ., vol. 9, no. 23, pp. 5252 – 5259, May 2018.
    DOI: 10.1039/c8sc01082j
    PMid: 29997880
    PMCid: PMC6001384
  15. D. K. Kölmel, E. T. Kool, “Oximes and Hydrazones in Bioconjugation: Mechanism and Catalysis, Chem. Rev., vol. 117, no. 15, pp. 10358 – 10376, Aug. 2017.
    Retrieved from: https://sci-hub.se/10.1021/acs.chemrev.7b00090
    Retrieved on: Mar. 20, 2021
  16. X. G. Li, M. Haaparanta, O. Solin, “Oxime formation for fluorine-18 labeling of peptides and proteins for positron emission tomography (PET) imaging: A review, J. Fluor. Chem., vol. 143, pp. 49 – 56, Nov. 2012.

Radiation Physics


Brahim El Filali, Tetyana Torchynska, Georgiy Polupan, Erick Velázquez Lozada, José A. Andraca Adame, Jorge L. Ramirez Garcia

Pages: 16-20

DOI: 10.37392/RapProc.2021.04

The impact of Ga and In donor co-doping on morphology, crystal structure and photoluminescence (PL) has been studied in ZnO:Ga:In nanocrystal (NC) films. The films were deposited by ultrasonic spray pyrolysis on silicon substrates heated to 400oC. For the study of double donor doping, the group of samples was prepared, where the In content was 1 at%, but the Ga contents were varied in the range of 0.5-2.5 at.%. To stimulate crystallization of the films, all samples were annealed at 400oC for 4h in a nitrogen flow (5L/min). The obtained ZnO:Ga:1.0%In NC films are characterized by wurtzite crystal structures for all Ga concentrations. The variation non monotonous of the morphology and PL intensity of the near band edge (NBE) emission band versus Ga contents has been detected in the ZnO:Ga:1.0%In NC films. The ZnO crystal lattice parameters do not change up to the Ga content 1.0 at%, then decreases with Ga content of 1.5 at% and enlarging to ≥ 2.0-2.5 at% Ga in the films. High-quality NC films with wurtzite-type crystalline structure, planar morphology, bright NBE emission and the small intensity of defect related PL bands have been obtained for the 1.5 at% Ga. The reasons why the parameters vary non monotonic and the optimal concentrations for the Ga/In donor type doping the ZnO NC films have been analyzed and discussed.
  1. A. Janotti, C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys., vol. 72, no. 12, 126501, Oct. 2009.
    DOI: 10.1088/0034-4885/72/12/126501
  2. L. Schmidt-Mende, J. L. MacManus-Driscoll, “ZnO – nanostructures, defects, and devices,” Mater. Today, vol. 10, no. 5, pp. 40 - 48, May 2007.
    DOI: 10.1016/S1369-7021(07)70078-0
  3. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci., vol. 50, no. 3, pp. 293 - 340, May 2005.
    DOI: 10.1016/j.pmatsci.2004.04.001
  4. N. H. Alvi, S. M. Usman Ali, S. Hussain, O. Nur, M. Willander, “Fabrication and comparative optical characterization of n-ZnO nanostructures (nanowalls, nanorods, nanoflowers and nanotubes)/p-GaN Light emitting diodes,” Scr. Mater., vol. 64, no. 8, pp. 697 - 700, Apr. 2011.
    DOI: 10.1016/j.scriptamat.2010.11.046
  5. T. V. Torchynska, B. El Filali, “Size dependent emission stimulation in ZnO nanosheets,” J. Lumin., vol. 149, pp. 54 - 60, May 2014.
    DOI: 10.1016/j.jlumin.2014.01.008
  6. N. Zebbar, et al., “UV and visible photoluminescence emission intensity of undoped and In-doped ZnO thin film and photoresponsivity of ZnO:In/Si hetero-junction,” Thin Solid Films, vol. 605, pp. 89 - 94, Apr. 2016.
    DOI: 10.1016/j.tsf.2015.09.061
  7. J. Wienke, B. van der Zanden, M. Tijssen, M. Zeman, “Performance of spray-deposited ZnO:In layers as front electrodes in thin-film silicon solar cells,” vol. 92. no. 8, pp. 884 - 890, Aug. 2008.
    DOI: 10.1016/j.solmat.2008.01.023
  8. M. A. Lucio-Lopez, M. A. Luna-Arias, A. Maldonado, M. de la L. Olvera, D. R. Acosta, “Preparation of conducting and transparent indium-doped ZnO thin films by chemical spray,” Sol. Energy Mater. Sol. Cells, vol. 90, no. 6, pp. 733 – 741, Apr. 2006.
    DOI: 10.1016/j.solmat.2005.04.010
  9. D. C. Look, et al., “Evidence for Native-Defect Donors in n-Type ZnO,” Phys. Rev. Lett., vol. 95, no. 22, 225502, Nov. 2005.
    DOI: 10.1103/PhysRevLett.95.225502
  10. G. A. Shi, M. Saboktakin, M. Stavola, ““Hidden hydrogen” in as-grown ZnO,” Appl. Phys. Lett., vol. 85, no. 23, 5601, Dec. 2004.
    DOI: 10.1063/1.1832736
  11. K. Ellmer, A. Klein, B. Rech, Transparent Conductive Zinc Oxide, 1st ed., New York (NY), USA: Springer, 2008.
    Retrieved from: 3540736123_lp.pdf (ciando.com)
    Retrieved on: Jan. 13, 2021
  12. M. H. Mamat, et al., “Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications,” Opt. Mater., vol. 32, no. 6, pp. 696 - 699, Apr. 2010.
    DOI: 10.1016/j.optmat.2009.12.005
  13. E. Arca, K. Fleischer, I. Shvets, “Tuning the crystallographic, morphological, optical and electrical properties of ZnO:Al grown by spray pyrolysis,” Thin Solid Films, vol. 555, pp. 9 - 12, Mar. 2014.
    DOI: 10.1016/j.tsf.2013.08.110
  14. F. Chaabouni, B. Khalfallah, M. Abaab, “Doping Ga effect on ZnO radio frequency sputtered films from a powder target,” Thin Solid Films, vol. 617, no. B, pp. 95 - 102, Oct. 2016.
    DOI: 10.1016/j.tsf.2015.12.047
  15. M. Yilmaz, “Investigation of characteristics of ZnO:Ga nanocrystalline thin films with varying dopant content,” Mater. Sci. Semicond. Process., vol. 40, pp. 99 - 106, Dec. 2015.
    DOI: 10.1016/j.mssp.2015.06.031
  16. C. Yu et al., “Effect of Indium doping on the photoelectric properties of n-ZnO nanorods/p-GaN heterojunction light-emitting diodes,” Superlattices Microstruct . ,vol. 120, pp. 298 - 304, Aug. 2018.
    DOI: 10.1016/j.spmi.2018.05.060
  17. R. K. Gupta, K. Ghosh, R. Patel, S. R. Mishra, P. K. Kahol, “Band gap engineering of ZnO thin films by In2O3 incorporation,” J. Cryst. Growth, vol. 310, no. 12, pp. 3019 - 3023, Jun. 2008.
    DOI: 10.1016/j.jcrysgro.2008.03.004
  18. S. Edinger et al., “Highly transparent and conductive indium-doped zinc oxide films deposited at low substrate temperature by spray pyrolysis from water-based solutions,” J. Mater. Sci., vol. 52, pp. 8591 – 8602, Jul. 2017.
    DOI: 10.1007/s10853-017-1084-8
  19. S. D. Ponja, S. Sathasivam, I. P. Parkin, C. J. Carmalt, “Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition,” Sci. Rep., vol. 10, 638, Jan. 2020.
    DOI: 10.1038/s41598-020-57532-7
  20. T. P. Rao et al., “Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis,” Physica B Condens. Matter., vol. 405, no. 9, pp. 2226 - 2231, May 2010.
    DOI: 10.1016/j.physb.2010.02.016
  21. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, M. Okuda, “Low Resistivity Transparent Conducting Al-Doped ZnO Films Prepared by Pulsed Laser Deposition,” Thin Solid Films, vol. 445, no. 2, pp. 263 - 267, Dec.2003.
    DOI: 10.1016/S0040-6090(03)01158-1
  22. J. G. Lu et al., “Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions,” J. Appl. Phys., vol. 100, no. 7, 073714, Oct. 2006.
    DOI: 10.1063/1.2357638
  23. K. Mahmooda, A. Khalid, S. W. Ahmad, M. T. Mehran, “Indium-doped ZnO mesoporous nanofibers as efficient electron transporting materials for perovskite solar cells,” Surf. Coat. Technol., vol. 352, pp. 231 - 237, Oct. 2018.
    DOI: 10.1016/j.surfcoat.2018.08.039
  24. J.-Y. Noh, H. Kim, Y.-S. Kim, C. H. Park, “Electron doping limit in Al-doped ZnO by donor-acceptor interactions,” J. Appl. Phys., vol. 113, no 15, 153703, Apr. 2013.
    DOI: 10.1063/1.4801533
  25. D. C. Look et al., “Self-compensation in semiconductors: the Zn-vacancy in Ga-doped ZnO,” Phys. Rev. B, vol. 84, no. 11, 115202, Sep. 2011.
    DOI: 10.1103/PhysRevB.84.115202
  26. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A, vol. 32, no. 5, pp. 751 - 767, Sep. 1976.
    DOI: 10.1107/S0567739476001551
  27. E. V. Lozada, T. V. Torchynska, J. L. Casas Espinola, B. P. Millan, “Emission of ZnO:Ag nanorods obtained by ultrasonic spray pyrolysis,” Physica B Condens. Matter., vol. 453, pp. 111 - 115, Nov. 2014.
    DOI: 10.1016/j.physb.2014.04.083
  28. M. Dybiec et al., “Photoluminescence scanning on InAs/InGaAs quantum dot structures,” Appl. Surf. Sci., vol. 252, no. 15, pp. 5542 - 5545, May 2006.
    DOI: 10.1016/j.apsusc.2005.12.125
  29. T. V. Torchynska, A. Stintz, “Some aspects of emission variation in InAs quantum dots coupled with symmetric quantum wells,” J. Appl. Phys., vol. 108, no. 2, 024316, Jul. 2010.
    DOI: 10.1063/1.3455851
  30. Metallic, Covalent and Ionic Radii(r), Wired Chemist.
    Retrieved from: 10.1016/j.optmat.2019.01.056
  31. T. V. Torchynska, B. El Filali, G. Polupan, “In-related complex defects and emission of in-doped ZnO nanocrystal films,” Physica E Low Dimens. Syst. Nanostruct., vol. 113, pp. 137 - 142, Sep. 2019.
    DOI: 10.1016/j.physe.2019.05.014


S. Vuchkan, S. Trofymenko, V. Lazur, H.Vasylyeva, M. Hryhorenko, Yu. Kylivnik, O. Sych

Pages: 21-26

DOI: 10.37392/RapProc.2021.05

The radiation resistance of natural zeolite, cation exchange resin, carbon sorbent, and titanium phosphate were investigated, as well as the ability to adsorb strontium ions after internal adsorbents irradiation. It is shown, that upon irradiation the adsorption properties of all these materials are slightly reduced. The only exception is titanium phosphate with a surface modified with NH 4 OH. Initial and residual concentration of stable strontium isotopes was measured by direct complexometric titration. Some experiments were performed with radioactive 90 Sr as well. The amount of 90 Sr was controlled by liquid scintillation techniques. The values of adsorption of strontium ions by irradiated and non-irradiated samples of amorphous titanium phosphate were determined. The analysis of changes of titanium phosphate surface under the action of external irradiation was conducted by the method of low-temperature nitrogen adsorption-desorption isotherms. The proportion of micro and mesopores, as well as the total surface area of the investigated adsorbent, were estimated. The pore volume and pore radius were calculated by the DFT and BJH methods. A brief comparison of these methods was made.
  1. H. Vasylyeva et al.,“Adsorption of zirconium ions by X-type zeolite,” Biointerface Res. Appl. Chem., vol. 11, no. 5, pp. 13421 – 13431, Feb. 2021.
    DOI: 10.33263/BRIAC115.1342113431
  2. N. V. Sych et al., “Porous structure and surface chemistry of phosphoric acid activated carbon from corncob,” Appl. Surf. Sci., vol. 261, pp. 75 – 82, Nov. 2012.
    DOI: 10.1016/j.apsusc.2012.07.084
  3. Y. Takahatake, A. Shibata, K. Nomura, T. Sato, “Effect of Flowing Water on Sr Sorption. Changes of Hydrous Sodium Titanate,” Minerals, vol. 7, no. 12, 247, Dec. 2017.
    DOI: 10.3390/min7120247
  4. I. Mironyuk, T. Tatarchuk, H. Vasylyeva, M. Naushad, I. Mykytyn, “Adsorption of Sr(II) cations onto phosphated mesoporous titanium dioxide: Mechanism, isotherm and kinetics studies,” J. Environ. Chem. Eng., vol. 7, no. 6, 103430, Dec. 2019.
    DOI: 10.1016/j.jece.2019.103430
  5. I. F. Mironyuk, I. M. Mykytyn, O. Y. Kaglyan, D. I. Gudkov, H. V. Vasylyeva, “90Sr adsorption from the aquatic environment of Chornobylexclusion zone by chemically enhanced TiO2,” Nucl. Phys. At. Energy, vol. 21, no. 4, pp. 347 – 353, Dec. 2020.
    DOI: 10.15407/jnpae2020.04.347
  6. H. Vasylyeva, I. Mironyuk, I. Mykytyn, K. Savka, Equilibrium studies of yttrium adsorption from aqueous solutions by titanium dioxide,” Appl. Radiat. Isot., vol. 168, 109473, Feb. 2021.
    DOI: 10.1016/j.apradiso.2020.109473
    PMid: 33658128
  7. E. A. Abdel-Galil, H. Moloukhia, M. Abdel-Khalik, S. S. Mahrous, “Synthesisand physico-chemical characterization of cellulose/HO7Sb 3 nanocomposite as adsorbent for the removal of some radionuclides from aqueous solutions,” Appl. Radiat. Isot., vol. 140, pp. 363 – 373, Oct. 2018.
    DOI: 10.1016/j.apradiso.2018.07.022
    PMid: 30142577
  8. I. F. Mironyuk et al., “Effects of enhanced clusterization of water at a surface of partially silylated nanosilica on adsorption of cations and anions from aqueous media,” Microporous Mesoporous Mater., vol. 277, pp. 95 – 104, Mar. 2019.
    DOI: 10.1016/j.micromeso.2018.10.016
  9. I. F. Mironyuk, H. V. Vasylyeva, V. I. Mandzyuk, N. A. Bezruka, T. V. Dmytrotsa, “The kinetics of adsorption binding of Ba2+ ions by trimethylsilylated silica,” Phys. Chem. Solid State, vol. 19, no. 1, pp. 66 - 73, Mar. 2018.
    DOI: 10.15330/pcss.19.1.66-73
  10. H. V. Vasylyeva et al., “Radiochemical studies of state of lanthanum microamounts in water solution,” J. Mol. Liq., vol. 118, no. 1 - 2, pp. 41 – 44, Apr. 2005.
    DOI: 10.1016/j.molliq.2004.07.008
  11. V. V. Strelko, “New sol–gel processes in the synthesis of inorganic sorbents and ion exchangers based on nanoporous oxides and phosphates of polyvalent metals,” J. Solgel Sci. Technol., vol. 68, no. 3, pp. 438 - 446, Mar. 2013.
    DOI: 10.1007/s10971-013-2990-0
  12. J. J. Surman, J. M. Pates, H. Zhang, S. Happel, “Development andcharacterization of a new Sr selective resin for the rapid determination of 90Sr in environmental water samples,” Talanta, vol. 129, pp. 623 – 628, Nov. 2014.
    DOI: 10.1016/j.talanta.2014.06.041
    PMid: 25127642
  13. H. Tazoe, “Novel method for low level Sr-90 activity detection in seawaterby combining oxalate precipitation and chelating resin extraction,” Geochem. J., vol. 51, no. 2, pp. 193 – 197, Mar. 2017.
    DOI: 10.2343/geochemj.2.0441
  14. M. M. S. Ali, E. A. Abdel-Galil, M. M. Hamed, “Removal of strontium radionuclides from liquid scintillation waste and environmental water samples,” Appl. Radiat. Isot., vol. 166, 109357, Dec. 2020.
    DOI: 10.1016/j.apradiso.2020.109357
    PMid: 32755756
  15. A. Surrao et al., “Improving the separation of strontium and barium with SrResin using chelating eluent solutions,” J. Radioanal. Nucl. Chem., vol. 319, no. 3, pp. 1185 – 1192, Jan. 2019.
    DOI: 10.1007/s10967-019-06432-w
  16. V. J. Angadi et al., “Mechanism of γ-irradiation-induced phase transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics,” J. Solid State Chem., vol. 246, pp. 119 – 124, Feb. 2017.
    DOI: 10.1016/j.jssc.2016.11.017
  17. H. M. Khalid, M. T. Rahman, M. K. Basher, M. J. Afzal, M. S. Bashar, “Impact of ionizing radiation doses on nanocrystalline TiO2 layer in DSSC’s photoanode film,” Results Phys., vol. 11, pp. 1172 - 1181, Dec. 2018.
    DOI: 10.1016/j.rinp.2018.10.006
  18. I. Mironyuk, I. Mykytyn, H. Vasylyeva, K. Savka, “Sodium-modified mesoporous TiO2: Sol-gel synthesis, characterization and adsorption activity toward heavy metal cations,” J. Mol. Liq., vol. 316, 113840, Oct. 2020.
    DOI: 10.1016/j.molliq.2020.113840
  19. Г. Васильєва, В. Яковлев, Ю. Килівник, М. Циба, “Вплив модифікування поверхні фосфату титану на його здатність поглинати йони стронцію із водних розчинів,” Фізика і хімія твердого тіла, т. 17, но. 4, с. 548 – 551, Грудень 2016. (H. Vasylyeva, M. Tsyba, Yu. Kylivnyk, V. Yakovlev, “The Influence of Chemical Modificate of Surface of Titanium Phosphate on its Ability to Sorb Strontium Ions from Aqueous Solutions,” Phys. Chem. Solid State, vol. 17, no. 4, pp. 548 – 551, Dec. 2016.)
    DOI: 10.15330/pcss.17.4.548-551
  20. А. Е. Каглян та інші, “Radionuklidy v aborigennykh vidakh ryb Chernobyl`skoj zony otchuzhdeniya,” Ядерна фізика та енергетика, т. 13, но. 3, с. 306 – 315, 2012.(Ye. Kaglyan et al., “Radionuclides in the indigenous fish species of the Chernobyl exclusion zone,” Nucl. Phys. At. Energy, vol. 13, no. 3, pp. 306 – 315, 2012.)
    Retrieved from: http://jnpae.kinr.kiev.ua/13.3/Articles_PDF/jnpae-2012-13-0306-Kaglyan.pdf
    Retrieved on: Dec. 15, 2020
  21. Yu. Kilivnik, S. Vuchkan, I. Syika, H. Vasylyeva, O. Sych, “Purification of aqueous solutions from strontium ions by natural and synthetic sorbents under increased radiation background,” in Book of Abstr. 9th Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2021) , Herceg Novi, Montenegro, 2021, p. 62.
    DOI: 10.21175/rad.abstr.book.2021.11.4
  22. S. Agostinelli et al., “Geant4 — a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A, vol. 506, no. 3, pp. 250 – 303, Jul. 2003.
    DOI: 10.1016/S0168-9002(03)01368-8

Radiation Measurements

On muon energy group structure based on deflection angle for application in muon scattering tomography: A Monte Carlo study through GEANT4 simulations

A. Ilker Topuz, Madis Kiisk, Andrea Giammanco, Märt Mägi

Pages: 27-31

DOI: 10.37392/RapProc.2021.06

The average deflection angle of the tracked muons in the muon scattering tomography exponentially declines in function of the initial kinetic energy, the angular dependence of which provides an opportunity to set out a binary relation between the initial kinetic energy and the average deflection angle, thereby leading to a coarse energy prediction founded on the mean deflection angle in the case of experimental incapabilities or limitations. Nevertheless, in addition to the disadvantageous exponential trend, the standard deviations observed in the deflection angles restrict the number of energy groups by yielding a significant number of coincided angular outcomes even at the fairly distinct energy values. In this study, we address the problem of the muon energy classification for a tomographic system consisting of 0.4-cm plastic scintillators manufactured from polyvinyl toluene and we explore a four-group structure besides a ternary partitioning between 0.25 and 8 GeV. In the first instance, we determine the deflection angles by tracking the hit locations in the detector layers on the sub-divided uniform energy intervals through the GEANT4 simulations. In the latter step, we express two misclassification probabilities where the first approach assumes a symmetrical linear propagation bounded by one standard deviation in one dimension, whereas the second procedure employs a positively defined modified Gaussian distribution that governs the overlapping area in two dimensions. In the final stage, we compare qualitatively and quantitatively the adjacent energy groups by using the computed misclassification probabilities. In the absence of any further data manipulation, we explicitly show that the misclassification probabilities increase when the number of energy groups augments. Furthermore, we also conclude that it is feasible to benefit from the mean deflection angle to roughly estimate the muon energies up to four energy groups by taking the misclassification probabilities into consideration, while the classification viability significantly diminishes when the partition number exceeds four on the basis of standard deviation.
  1. L. Bonechi, R. D’Alessandro, A. Giammanco, “Atmospheric muons as an imaging tool,” Rev. Phys., vol. 5, 100038, Nov. 2020.
    DOI: 10.1016/j.revip.2020.100038
  2. K. N. Borozdin et al., “Radiographic imaging with cosmic-ray muons,” Nature, vol. 422, p. 277, Mar. 2003.
    DOI: 10.1038/422277a
  3. E. T. Rand, O. Kamaev, A. Valente, A. Bhullar, “Nonparametric dense-object detection algorithm for applications of cosmic-ray muon tomography,” Phys. Rev. Applied, vol. 14, no. 6, 064032, Dec. 2020.
    DOI: 10.1103/PhysRevApplied.14.064032
  4. V. Anghel et al., “A plastic scintillator-based muon tomography system with an integrated muon spectrometer,” Nucl. Instrum. Methods Phys. Res. A, vol. 798, pp. 12 – 23, Oct. 2015.
    DOI: 10.1016/j.nima.2015.06.054
  5. P. Checchia et al., “INFN muon tomography demonstrator: past and recent results with an eye to near-future activities,” Philos. Trans. R. Soc. A, vol. 377, no. 2137, 20180065, Dec. 2018.
    DOI: 10.1098/rsta.2018.0065
    PMid: 30530541
    PMCid: PMC6335308
  6. L. J. Schultz et al., “Statistical reconstruction for cosmic ray muon tomography,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 1985 – 1993, Aug. 2007.
    DOI: 10.1109/TIP.2007.901239
    PMid: 17688203
  7. J. Burns et al., “Portable muon scattering tomography detectors for security imaging applications,” in Proc. 2016 IEEE Nucl. Sci. Symp., Med. Imaging Conf. Room-Temp. Semicond. Detector Workshop (NSS/MIC/RTSD), Strasbourg, France, 2016.
    DOI: 10.1109/NSSMIC.2016.8069919
  8. C. Jewett, V. N. P. Anghel, G. Jonkmans, M. Thompson, “Simulations of the use of cosmic-rays to image nuclear waste and verify the contents of spent fuel containers,” in Proc. 7th Annual Waste Manag. Conf. (WM2011), Phoenix (AZ), USA, 2011.
    Retrieved from: http://archive.wmsym.org/2011/papers/11341.pdf
    Retrieved on: Jul. 18, 2021
  9. A. Georgadze, M. Kiisk, M. Magi, E. Avots, G. Anbarjafari, “Method and apparatus for detection and/or identification of materials and of articles using charged particles,” US Patent 16/977,293, USA, Jan. 7, 2021.
    Retrieved from: https://patents.google.com/patent/US20210003735A1/en
    Retrieved on: Jul. 18, 2021
  10. S. Agostinelli et al., “Geant4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res. A, vol. 506, no. 3, pp. 250 – 303, Jul. 2003.
    DOI: 10.1016/S0168-9002(03)01368-8
  11. T. Carlisle, J. Cobb, D. Neuffer. “Multiple Scattering Measurements in the MICE Experiment,” in Proc. 3rd Int. Part. Accel. Conf. (IPAC 2012), New Orleans (LA), USA, 2012, pp. 1419 – 1421.
    Retrieved from: https://www.osti.gov/servlets/purl/1042408
    Retrieved on: Jul. 18, 2021
  12. D. Poulson et al., “Application of muon tomography to fuel cask monitoring,” Philos. Trans. Royal Soc. A, vol. 377, no. 2137, 20180052, Jan. 2019.
    DOI: 10.1098/rsta.2018.0052
    PMid: 30530532
    PMCid: PMC6335304
  13. B. O. Yanez, A. A. Aguilar-Arevalo, “A method to measure the integral vertical intensity and angular distribution of atmospheric muons with a stationary plastic scintillator bar detector,” Nucl. Instrum. Methods Phys. Res. A, vol. 987, 164870, Jan. 2021.
    DOI: 10.1016/j.nima.2020.164870

Safecast - Citizen Science for ambient dose rate monitoring

P. Kuča, J. Helebrant, P. Bossew

Pages: 32-38

DOI: 10.37392/RapProc.2021.07

Citizen Science has raised much interest for the last decades. In many scientific disciplines, citizens contribute to acquisition of field data mostly out of scientific interest. Institutional science used to look sceptically upon laypeople, but the attitude has largely changed as the benefits of Citizen Science for both active citizens and scientific institutions became apparent. One very successful project is SAFECAST, devoted to monitoring ambient ionizing radiation. The paper introduces the project and its measurement tool. Benefits and problems are discussed, the latter consisting primarily of uncertainty introduced by deviations from standard measurement protocol, in turn contributing to problems of interpretability. Altogether, measuring ambient dose rate is easy, but interpretation of results is not trivial and prone to spurious conclusions. One should have in mind that especially in case of real emergency (like Chernobyl and Fukushima accidents) the measurements of ambient dose-rate level only are not sufficient for proper decision-making on protective measures.
  1. S. Bonner, J. Ito, P. Franken, Safecast, Tokyo, Japan, 2011.
    Retrieved from: https://safecast.org/
    Retrieved on: Aug. 11, 2021
  2. A. Brown, P. Franken, S. Bonner, N. Dolezal, J. Moross, "Safecast: successful citizen-science for radiation measurement and communication after Fukushima," J. Radiol. Prot., vol. 36, no. 2, pp. S82 - S101, Jun. 2016.
    DOI: 10.1088/0952-4746/36/2/s82
    PMid: 27270965
  3. Citizen science , Wikipedia, the free encyclopedia, San Francisco (CA), USA.
    Retrieved from: https://en.wikipedia.org/wiki/Citizen_science Retrieved on: Aug. 13, 2021
  4. The Science of Citizen Science , К. Vohland et al., Eds., 1st ed., Cham, Switzerland: Springer, 2021.
    DOI: 10.1007/978-3-030-58278-4
  5. J. Hůlka, P. Kuča, J. Helebrant, Z. Rozlívka, "Citizen Measurements in Radiation Protection and Emergency Preparedness and Response - its role, pros and cons," in Proc. EUROSAFE Forum 2017, Paris, France, 2017.
    Retrieved from: https://www.eurosafe-forum.org/sites/default/files/Eurosafe2017/Seminars/4_08_Presentation_Kuca_final_ppt
    Retrieved on: Aug. 13, 2021
  6. J. Helebrant, P. Kuča, J. Hůlka, "RAMESIS: Radiační Měřicí Síť Pro Instituce a Školy K Zajištění Včasné Informovanosti a Zvýšení Bezpečnosti Občanů Měst a Obcí," prezentováno na Seminář: Otázky dopadu jaderné havárie do zemědělství a připravenost ČR , Praha, Česká Republika, Říjen, 2018. (J. Helebrant, P. Kuča, J. Hůlka, "RAMESIS: Radiation Measuring Network for Institutions and Schools to Ensure Timely Awareness and Increase Safety of Citizens of Towns and Municipalit," presented at the Seminar: Issues of the impact of a nuclear accident on agriculture and preparedness of the Czech Republicies , Prague, Czech Republic, Oct. 2018.)
    Retrieved from: https://www.suro.cz/cz/vyzkum/vysledky/safecast/09Hulka.pdf
    Retrieved on: Aug. 13, 2021
  7. P. Kuča, J. Helebrant, J. Hůlka, "Role of citizens measurements in radiation protection, emergency preparedness and response - its pros and cons," presented at the ICRP 4th Int. Symp. System of Radiological Protection & 2nd European Radiological Protection Week , Paris, France, Oct. 2017.
    Retrieved from: http://www.icrp-erpw2017.com/upload/presentations/ERPW%20Communication/Session_02/Session%2002_5_KUCA_ Presentation.pdf
    Retrieved on: Jan. 10, 2021
  8. Radiační měřicí síť pro instituce a školy k zajištění včasné informovanosti a zvýšení bezpečnosti občanů měst a obcí (RAMESIS) , Ministerstvem vnitra České republiky, Praha, Česká republika, 2015. ( Radiation measuring network for institutions and schools to ensure timely information and increase the safety of citizens of towns and municipalities (RAMESIS) , Ministry of the Interior of the Czech Republic, Prague, Czech Republic, 2015.)
    Retrieved from: https://www.suro.cz/aplikace/ramesis/#/safecast
    Retrieved on: Aug. 26, 2021
  9. Radiační měřicí síť pro instituce a školy k zajištění včasné informovanosti a zvýšení bezpečnosti občanů měst a obcí (RAMESIS) , Wikipedia, bezplatná encyklopedie, San Francisco (CA), USA. ( Radiation measuring network for institutions and schools to ensure timely information and increase the safety of citizens of towns and municipalities (RAMESIS) , Wikipedia, the free encyclopedia, San Francisco (CA), USA.)
    Retrieved from: https://www.suro.cz/aplikace/ramesis-wiki
    Retrieved on: Aug. 26, 2021
  10. P. Bossew, P. Kuča, J. Helebrant, "Mean ambient dose rate in various cities, inferred from Safecast data," J. Environ. Radioact., vol. 225, 106363, Dec. 2020.
    DOI: 10.1016/j.jenvrad.2020.106363
    PMid: 33120027
  11. Mapový software QGIS , Státní ústav radiační ochrany (SURO), Praha, Česká republika. (QGIS map software, National Radiation Protection Institute (SURO), Prague, Czech Republic.)
    Retrieved from: https://www.suro.cz/aplikace/ramesis-wiki/index.php/Safecast_-_software_pro_zobrazen%C3%AD_v_map%C4%9B
    Retrieved on: Aug. 17, 2021
  12. M. Zähringer, J. Sempau, Kalibrierfaktoren für Dosisleistungssonden in Umweltmessnetzen aus Monte-Carlo-Simulationen , Prüfbericht BfS-IAR-2/97, Bundesamt für Strahlenschutz (BfS), Salzgitter, Deutschland, 1997. (M. Zähringer, J. Sempau, Calibration factors for dose rate probes in environmental monitoring networks obtained from Monte Carlo simulations , Rep. BfS-IAR-2/97, Federal Office for Radiation Protection (BfS), Salzgitter, Germany, 1997.)
  13. A. Allisy, W. A. Jennings, A. M. Kellerer, J. W. Müller, Quantities and Units in Radiation Protection Dosimetry, Rep. 51, ICRU, Bethesda (MD), USA, 1993.
    DOI: 10.1093/jicru/os26.2.Report51
  14. P. Bossew et al., "Estimating the terrestrial gamma dose rate by decomposition of the ambient dose equivalent rate," J. Environ. Radioact., vol. 166, pp. 296 - 308, Jan. 2017.
    DOI: 10.1016/j.jenvrad.2016.02.013
    PMid: 26926960
  15. European Atlas of Natural Radiation , G. Cinelli, M. De Cort, T. Tollefsen, Eds., 1st ed., Luxembourg, Luxembourg: Publication Office of the European Union, 2019.
    Retrieved from: https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiation/Download-page
    Retrieved on: Jul. 31, 2021

Monitoring of critical parameters of radiation sterilization process at an industrial electron accelerator

R.I. Pomatsalyuk, V.Yu. Titov, D.V. Titov, V.L. Uvarov, V.A. Shevchenko, A.A. Zakharchenko

Pages: 39-43

DOI: 10.37392/RapProc.2021.08

The use of ionizing radiation is a safe and effective method for sterilizing medical devices, pharmaceuticals and food products. In accordance with the requirements of international standards, a necessary condition of the process QA is to maintain its critical parameters within the specified limits. Primarily, such parameters are the electron energy and absorbed dose. The value of the latter must be controlled in each unit of the processed product. Traditionally, the disposable chemical dosimeters are used in an off-line mode for these purposes. For on line monitoring of beam energy and absorbed dose, a method based on measurement of distribution of the charge induced by irradiation in an extended stack monitor positioned behind an irradiated object was developed and implemented. In the report, a brief overview of a control system designed on the basis of an EPICS package for continuous monitoring of the processing parameters at a LU-10 industrial electron linac of NSC KIPT with beam energy of 8-10 MeV is presented. The operation principle of the system is described, as well as the procedure and results of calibration of electron beam energy and absorbed dose measuring channels.
  1. D. Adlienė, R. Adlytė, “Dosimetry principles, dose measurements and radiation protection,” in Applications of Ionizing Radiation in Materials Processing, vol. 1, Y. Sun, A. G. Chmielewski, Eds., Warszawa, Poland: INCT, 2017, ch. 3, p. 66.
    Retrieved from: http://www.ichtj.waw.pl/ichtj/publ/monogr/sun2017/sun-chapter3.pdf
    Retrieved on: Jan. 10, 2019
  2. R. I. Pomatsalyuk et al., “Development of a method of absorbed dose on-line monitoring at product processing by scanned electron beam,” Probl. Atom. Sci. Technol., no. 3, pp. 149 – 153, 2016.
    Retrieved from: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/115370/47-Pomatsalyuk.pdf?sequence=1
    Retrieved on: Jan. 10, 2019
  3. Experimental Physics and Industrial Control System (EPICS) , Argonne National Laboratory, Lemont (IL), USA.
    Retrieved from: http://www.aps.anl.gov/epics/
    Retrieved on: Jan. 10, 2019
  4. R. I. Pomatsalyuk, V. L. Uvarov, V. A. Shevchenko, I. N. Shlyakov, “Modernization of Control System of the Beam Critical Parameters at a LU-10 Industrial Electron Accelerator,” Probl. Atom. Sci. Technol., no. 6, pp. 175 - 180, 2017.
    Retrieved from: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/136195/41-Pomatsalyuk.pdf?sequence=1
    Retrieved on: Jan. 10, 2019
  5. The EPICS Archiver Appliance , AccelUtils collaboration.
    Retrieved from: https://slacmshankar.github.io/epicsarchiver_docs/index.html
    Retrieved on: Jan. 10, 2019
  6. R. I. Pomatsalyuk et al., “Measurement of Electron Beam Energy Characteristics at an Industrial Accelerator,” Probl. Atom. Sci. Technol., no. 6, pp. 3 – 7, 2017.
    Retrieved from: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/136210/01-Pomatsalyuk.pdf?sequence=1
    Retrieved on: Jan. 10, 2019
  7. Practice for dosimetry in an electron beam facility for radiation processing at energies between 300 keV and 25 MeV , ISO/ASTM 51649:2015, Mar. 15, 2015.
  8. Risø High Dose Reference Laboratory (Risø HDLR), Calorimeters, DTU Nutech Center for Nuclear Technologies, Copenhagen, Denmark.
    Retrieved from: https://www.nutech.dtu.dk/english/Products-and-Services/Industrial-Dosimetry/HDRL/calorimeters
    Retrieved on: May. 20, 2021.
  9. Practice for use of calorimetric dosimetry systems for dose measurements and dosimetry system calibration in electron beams, ISO/ASTM 51631:2020, Feb. 25, 2020.

Characteristics of natural background radiation at BSUIN and EUL Underground Laboratories

Katarzyna Szkliniarz

Pages: 44-47

DOI: 10.37392/RapProc.2021.09

Characterization of underground laboratories in terms of their natural radioactivity is necessary to determine the conditions that prevail there and plan using these sites for scientific research and other activities. The article compares natural background radiation in three underground laboratories located in the Baltic Sea region. The comparison includes measurements made in underground laboratories (in-situ) and detailed laboratory analyses of water and rock samples taken from these locations. Measurements were made by gamma, alpha spectroscopy, and LSC technique.
  1. A. Bettini, “The world deep underground laboratories,” Eur. Phys. J. Plus., vol. 127, no. 9, p. 114, Sep. 2012.
    DOI: 10.1140/epjp/i2012-12114-y
  2. Baltic Sea Underground Innovation Network (BSUIN) , European Union, Brussels, Belgium.
    Retrieved from: https://bsuin.eu
    Retrieved on: Jul. 25, 2021
  3. European Underground Laboratories (EUL) , European Union, Brussels, Belgium.
    Retrieved from: https://undergroundlabs.network/
    Retrieved on: Jul. 25, 2021
  4. K. Polaczek-Grelik et al., “Characterization of the radiation environment at TU Bergakademie in Freiberg, Saxony, Germany,” Nucl. Instrum. Methods Phys. Res. A, vol. 946, no. 8, 162652, Dec. 2019.
    DOI: 10.1016/j.nima.2019.162652
  5. K. Polaczek-Grelik et al., “Natural background radiation at Lab 2 of Callio Lab, Pyhäsalmi mine in Finland,” Nucl. Instrum. Methods Phys. Res. A, vol. 969, no. 9, 164015, Jul. 2020.
    DOI: 10.1016/j.nima.2020.164015
  6. K. Szkliniarz et al., “Characteristics of Natural Background Radiation in the Polkowice‐Sieroszowice Mine, Poland,” Energies, vol. 14, no. 14, 4261, Jul. 2021.
    DOI: 10.3390/en14144261
  7. A. Walencik-Łata, B. Kozłowska, T. A. Przylibski, “Hydrochemical behaviour of dissolved uranium in selected groundwaters of the Kłodzko Valley (SW Poland) and its application possibilities as an environmental tracer,” Chemosphere, vol. 267, no. 1, 128911, Mar. 2021.
    DOI: 10.1016/j.chemosphere.2020.128911
    PMid: 33218734
  8. J. Suomela, Method for Determination of U-Isotopes in Water, SSI report 93-14, Swedish Radiation Institute, Stockholm, Sweden, 1993.
  9. Oznaczanie izotopów radu w wodzie metodą LSC , Polska Norma PN-89/ZN-70072, 1989. (Radium Isotopes Determination in Water with LSC Method, Polish Norm PN-89/ZN-70072, 1989.)


N. Marchese, A. Parlato, E.A.G. Tomarchio

Pages: 48-51

DOI: 10.37392/RapProc.2021.10

This work presents the results of two cycles of neutron dose rate measurements realized using an ALNOR 2202D Neutron Dose Rate Meter whose time response is acquired and analyzed through a controlled ORTEC MCS-32 acquisition card in Windows environment. The data obtained have been compared with values from previous experimental surveys and with the data provided by the worldwide main observatories. It has been also verified the influence of the fluctuations in the flux of cosmic rays during the course of a solar cycle. By comparing the realized measurements and the data provided by the cosmic ray monitoring networks it is also possible to obtain a value of ambient dose equivalent rate and neutron flux rate which can be used as a reference for design a neutron irradiation testing of electronic devices.
  1. F. Cannizzaro, G. Greco, M. Raneli, M. C. Spitale, E. Tomarchio, “Behaviour of 7Be Air Concentration observed during a period of 13 years and Comparison with Sun Activity,” Nucl. Geophys., vol. 9, no. 6, pp. 597 – 607, 1995.
    DOI: 10.1016/0969-8086(95)00043-7
  2. F. Cannizzaro, G. Greco, M. Raneli, M. C. Spitale, E. Tomarchio, “Concentration measurements of 7Be at ground level air at Palermo, Italy – Comparison with solar activity over a period of 21 years,” J. Environ. Radioact., vol. 72, no. 3, pp. 259 – 271, 2004.
    DOI: 10.1016/S0265-931X(03)00177-2
    PMid: 14972409
  3. S. Basile, R. Burlon, E. Tomarchio, “Analysis of 7Be and 210Pb concentration and 7Be/210Pb activity ratio in ground level air at Palermo (Italy),” Radiat. Eff. Defects Solids, vol. 174, no. 11 – 12, pp. 998 – 1007, 2019.
    DOI: 10.1080/10420150.2019.1683838
  4. Neutron Monitor DataBase (NMDB), European Commission, Brussels, Belgium.
    Retrieved from: http://www01.nmdb.eu
    Retrieved on: Aug. 20, 2021
  5. Sunspot Index and Long-term Solar Observations (SILSO) , on-line Sunspot Number catalogue: years: 2012 and 2020, Royal Observatory of Belgium, Brussels, Belgium.
    Retrieved from: http://www.sidc.be/silso/
    Retrieved on: Aug. 20, 2021.
  6. T. Nunomiya, S. Abe, N. Hirabayashi, T. Nakamura, “Sequential Measurements of Cosmic-Ray Neutron Energy Spectrum and Ambient Dose Equivalent on the Ground,” J. Nucl. Sci. Technol., vol. 41, suppl. 4, pp. 466 – 469, Mar. 2004.
    DOI: 10.1080/00223131.2004.10875748
  7. T. Nakamura et al., “Sequential Measurements of Cosmic-Ray Neutron Energy Spectrum and Ambient Dose Equivalent on the Ground,” presented at the 11th Int. Conf. International Radiation Protection Association (IRPA 11) , Madrid, Spain, May 2004.
  8. T. Nakamura, T. Nunomiya, S. Abe, K. Terunuma, H. Suzuki, “Sequential Measurements of Cosmic-Ray Neutron Spectrum and Dose Rate at Sea Level in Sendai, Japan,” J. Nucl. Sci. Technol., vol. 42, no. 10, pp. 843 – 853, Oct. 2005.
    DOI: 10.1080/18811248.2005.9711035
  9. T. Nakamura, “Cosmic-ray Neutron Spectrometry and Dosimetry,” J. Nucl. Sci. Technol., vol. 45, suppl. 5, pp. 1 – 7, Jun. 2008.
    DOI: 10.1080/00223131.2008.10875772
  10. M. Kowatari et al., “Evaluation of Geomagnetic Latitude Dependence of the Cosmic-ray Induced Environmental Neutrons in Japan,” J. Nucl. Sci. Technol., vol. 44, no. 2, pp. 114 – 120, 2007.
    DOI: 10.1080/18811248.2007.9711264
  11. K. Lee, R. Sheu, “Comparing two Measurements of the same Cosmic-ray neutron spectrum using standard Bonner Spheres and high-sensitivity Bonner cylinders,” Radiat. Prot. Dosimetry, vol. 177, no. 4, pp. 450 – 457, Dec. 2017.
    DOI: 10.1093/rpd/ncx063
    PMid: 29272885
  12. D. A. H. Rasolonjatovo et al., “Measurement for the Dose-rates of the Cosmic-ray Components on the Ground,” J. Radiat. Res., vol. 43, no. Suppl, pp. S27 – S33, Dec. 2002.
    DOI: 10.1269/jrr.43.S27
    PMid: 12793726
  13. G. F. Krymsky, V. G. Grigor’ev, S. A. Starodubtsev, “New method for estimating the absolute flux and energy spectrum of solar cosmic rays based on neutron-monitor data,” JETP Lett., vol. 88, no. 7, pp. 411 – 413, Dec. 2008.
    DOI: 10.1134/S0021364008190016

Radiation Protection

Estimation of Diagnostic Reference Levels for Complete Myocardial Scintigraphy Protocol in South of Brazil

Daniela Cristina Panciera, Daiane Cristini Barbosa de Souza, Jéssica Soares Machado, Julio Cesar de Souza Ribeiro

Pages: 52-55

DOI: 10.37392/RapProc.2021.11

Nuclear Medicine (NM) is a medical specialty divided into diagnostic and therapeutic applications. The doses resulting from procedures in this practice come from activities administered to patients and contribute to the exposure of the population to ionizing radiation. Therefore, the optimization of radiological protection aims to balance the image quality of medical exams and the amount of radiation received by the patient, which should be optimized to the minimum value necessary for the diagnostic. The International Commission on Radiological Protection (ICRP) provides guidance on the establishment of reference levels for procedures in various modalities. In MN, diagnostic reference levels (DRLs) are based on the administered activities to patients and are considered an important tool for optimizing procedures. The objective of the present study was to estimate the typical values of administered activities resulting from Nuclear Medicine procedures performed in a private service located in the South region of Brazil. The applied methodology consisted of using secondary data retrospectively collected from the procedures registration systems in a nuclear medicine service performed in 2020. The data collected were: procedures type, radionuclide, date of the exam, administered activity (Bq), weight (kg), height (m), age (years), and gender of the patients, as well as the imaging equipment used by the service. The result obtained was average height: 1.7 m; standard deviation: 0.1; average age: 64.4 y; standard deviation 10.7; agemax. 88.0 y and agemin. 37.0 y; average weight: 79.5 kg; standard deviation:
13.5. The typical values, based on the median of administered activity (MBq) distribution of 99mTc, on myocardial scintigraphy in the stress phase was 1,221.0 MBq and for the rest 407.0 MBq. Based on the results of the present study, we expect to encourage the establishment of an efficient routine for recording and organizing data in Santa Catarina. In addition, we would like to emphasize the benefit of optimizing the administered activities and radiation protection practices for population and individuals. Through studies like this one, we hope to contribute to the estimation of DRLs in NM in Brazil and to stimulate the creation of a culture of recording doses and activities; to help optimize the administered activities and the practices involved; as well as to contribute with the provision of data for the estimation of collective effective dose from NM examinations.
  1. Sources, Effects and Risks of Ionizing Radiation, Annexes A and B, UNSCEAR 2017 Report, UNSCEAR, Vienna, Austria, 2017.
    Retrieved from: https://www.unscear.org/docs/publications/2017/UNSCEAR_2017_Report.pdf
    Retrieved on: Aug. 20, 2021.
  2. Medical Radiation Exposure of the European Population Part 1/2, Radiation Protection no. 180, European Commission, Luxembourg, Luxembourg, 2014.
    Retrieved from: https://ec.europa.eu/energy/sites/default/files/documents/RP180.pdf
    Retrieved on: Aug. 20, 2021.
  3. D. M. Seraphim, A. C. F. da S. Fischer, “Definição de Níveis de Referência em Diagnóstico do Serviço de Medicina Nuclear do Hospital de Clínicas de Porto Alegre,” Revista Brasileira de Ciências da Radiação, vol. 8, não. 3, pp. 1 – 13, Set. 2020. (D. M. Seraphim, A. C. F. da S. Fischer, “Definition of Diagnostic Reference Levels at the Nuclear Medicine Service of the Hospital de Clínicas de Porto Alegre,” Braz. J. Radiat. Sci., vol. 8, no. 3, pp. 1 – 13, Sep. 2020.)
    DOI: 10.15392/bjrs.v8i3.1208
  4. J. Willegaignon et al., “Diagnostic reference level: an important tool for reducing radiation doses in adult and pediatric nuclear medicine procedures in Brazil,” Nucl. Med. Commun., vol. 37, no. 5, pp. 525 – 533, May 2016.
    DOI: 10.1097/MNM.0000000000000462
    PMid: 26657219
  5. M. Lassmann, G. Pedroli, “Dose optimization in nuclear medicine,” Clin. Transl. Imaging, vol. 4, no. 1, pp. 3 – 4, Feb. 2016.
    DOI: 10.1007/s40336-015-0154-7
  6. Diagnostic Reference Levels (DRLs) in medical imaging, IAEA, Vienna, Austria, 2021.
    Retrieved from: https://www.iaea.org/resources/rpop/health-professionals/nuclear-medicine/diagnostic-nuclear-medicine/diagnostic-reference-levels-in-medical-imaging#7
    Retrieved on: Aug. 14, 2021.
  7. Radiological Protection and Safety in Medicine, vol. 26, ICRP Publication no. 73, ICRP, Ottawa, Canada, 1996.
    Retrieved from: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_26_2
    Retrieved on: Aug. 14, 2021.
  8. The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM on laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
    Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF
    Retrieved on: Nov. 22, 2021.
  9. T. S. Jornada, D. C. Panciera, R. B. Doro, “Method to determine a regional diagnostic reference level for intraoral radiographs in the state of Santa Catarina, Brazil,” Med. Phys. Int. J., vol. 7, no. 1, pp. 38 – 43, May 2019.
    Retrieved from: http://www.mpijournal.org/MPI-v07i01.aspx
    Retrieved on: Aug. 19, 2021.
  10. E. M. Alkhybari et al., “An Australian local diagnostic reference level for paediatric whole-body 18F-FDG PET/CT,” Br. J. Radiol., vol. 92, no. 1096, Apr. 2019.
    DOI: 10.1259/bjr.20180879
    PMid: 30653334
    PMCid: PMC6540867
  11. E. de Geest, F. Jacobs, R. A. Dierckx, “A multicenter study of the administered activity in nuclear medicine departments in Belgium,” presented at the 11th Int. Conf. International Radiation Protection Association (IRPA 11), Madrid, Spain, May 2004.
  12. Niveaux de référence diagnostiques en radiologie et en médecine nucléaire, Institute de Radioprotection et de Sûreté Nucléaire (IRSN), Paris, France, 2012. (Diagnostic Reference Levels in Radiology and Nuclear Medicine, Institute of Radiation Protection and Nuclear Safety (IRSN), Paris, France, 2012.)
    Retrieved from: http://nrd.irsn.fr/document/site_49/fckfiles/File/Arrete-NRD-24102011.pdf
    Retrieved on: Aug. 18, 2021.
  13. C. M. Oliveira, L. V. de Sá, T. C. Alonso, T. A. da Silva, “Suggestion of a national diagnostic reference level for 18F-FDG/PET scans in adult cancer patients in Brazil,” Radiol. Bras., vol. 46, no. 5, pp. 284 – 289, Sep-Oct. 2013.
    DOI: 10.1590/S0100-39842013000500004
  14. Diagnostic reference levels in medical imaging, vol. 46, ICRP Publication no. 135, ICRP, Ottawa, Canada, 2017.
    Retrieved from: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_46_1
    Retrieved on: Nov. 22, 2021.


Dose rate assessment of 137Cs to pelagic fish using an innovative method combining field measurements, CMEMS data and ERICA Assessment Tool

G. Mavrokefalou, M. Sotiropoulou, O. Sykioti, H. (E) Florou, G. Kitis

Pages: 56-61

DOI: 10.37392/RapProc.2021.12

Earth Observation satellites and environmental models are able to monitor changes of ecological parameters in the marine environment. Radionuclides cannot be directly measured using satellite remote sensing, because they are not currently detectable by the satellite instruments. Nevertheless, the levels of radionuclides, in the marine environment are known to be associated with physical and biogeochemical parameters of the natural environment. Considering this attribute, we investigate the potential relation between 137Cs activity concentration and sea surface salinity. We select the parameter of salinity, as the element of Cesium in the seawater is conservative and contributes to it. Cs-137 activity concentration measurements are issued from the database of the Environmental Radioactivity Laboratory (ERL) of NCSR “D” for the period 1993 to 2006. Salinity corresponds to sea surface salinity (SSS) data issued from Copernicus Marine Environment Monitoring Service (CMEMS) database spanning also the period 1993 to 2006. A total of 15 measurements are used for the establishment of a linear regression model for the marine environment of the Island of Lemnos (Greece). The Island of Lemnos is located in the Aegean, southwest of the Dardanelles Strait and its waters are constantly enriched with 137Cs of Black Sea origin. The resulting linear model (R2=0.82) is then validated using recent 137Cs measurements spanning November 2018 and July 2019. During two sampling cruises that took place, on 12-15 November 2018 and on 24-28 July 2019, a total of 11 samples were collected and analyzed. The measured concentrations obtained by gamma spectrometry, in terms of activity concentrations (Bq/m3), are then compared with the estimated 137Cs concentrations obtained by the model. The estimations present a relative error of less than 25%. Finally, in order to conduct the risk assessment in the studied area, the dose rate thematic maps in the marine area of Lemnos are calculated with the ERICA Assessment Tool and QGIS for pelagic fish, as one of the most representative organism of the studied environment and the most important, in terms of commercial value. The doses in pelagic fish are calculated for each pixel within the estimated 137Cs activity concentrations thematic maps for November 2018 and July 2019. The results show the corresponding dose rate maps for the pelagic fish during November 2018 and July 2019 for the Lemnos Island. The dose rates in the thematic maps vary from 0.7 to 1.1 μGy/year, which are far lower than the intervention levels, indicating low impact due to the 137Cs exposure.
  1. C. Tsabaris et al., “Vertical distribution and temporal trends of 137Cs at Lemnos and Cretan deep basins of the Aegean Sea, Greece,” Deep Sea Res. Part II Top. Stud. Oceanogr., vol. 171, 104603, Jan. 2020.
    DOI: 10.1016/j.dsr2.2019.06.011
  2. N. Evangeliou, H. Florou, P. Bokoros, M. Scoullos, “Temporal and spatial distribution of 137Cs in Eastern Mediterranean Sea. Horizontal and vertical dispersion in two regions,” J. Environ. Radioact., vol. 100, no. 8, pp. 626 - 636, Aug. 2009.
    DOI: 10.1016/j.jenvrad.2009.04.014
    PMid: 19523726
  3. H. Florou, G. Nicolaou, N. Evangeliou, “The concentration of 137Cs in the surface of the Greek marine environment,” J. Environ. Radioact., vol. 101, no. 8, pp. 654 - 657, Aug. 2010.
    DOI: 10.1016/j.jenvrad.2010.03.016
    PMid: 20462674
  4. P. P. Povinec, P. B. du Bois, P. J. Kershaw, H. Nies, P. Scotto, “Temporal and spatial trends in the distribution of 137Cs in surface waters of Northern European Seas-a record of 40 years of investigations,” Deep Sea Res. Part II Top. Stud. Oceanogr., vol. 50, no. 17 - 21, pp. 2785 - 2801, Sep. 2003.
    DOI: 10.1016/S0967-0645(03)00148-6
  5. J V. i Battle, “Radioactivity in the Marine Environment,” in Encyclopedia of Sustainability Science and Technology, R. A. Meyers, Ed., 1st ed., New York (NY), USA: Springer, 2012, pp. 8387 – 8425.
    DOI: 10.1007/978-1-4419-0851-3_880
  6. B. Salbu, “Fractionation of radionuclide species in the environment,” J. Environ. Radioact., vol. 100, no. 4, pp. 283 - 289, Apr. 2009.
    DOI: 10.1016/j.jenvrad.2008.12.013
    PMid: 19176267
  7. B. Salbu, “Speciation of Radionuclides in the Environment,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, R. J. Rosenberg, Eds., Hoboken (NJ), USA: John Wiley & Sons, 2006.
    DOI: 10.1002/9780470027318
  8. S. S. I. Kyvelou, D. G. Ierapetritis, “Fisheries sustainability through soft multi-use maritime spatial planning and local development co-management: Potentials and challenges in Greece,” Sustainability, vol. 12, no. 5, 2026, Mar. 2020.
    DOI: 10.3390/su12052026
  9. K. Tsagarakis et al., “Food-web traits of the North Aegean Sea ecosystem (Eastern Mediterranean) and comparison with other Mediterranean ecosystems,” Estuar. Coast. Shelf Sci., vol. 88, no. 2, pp. 233 - 248, Jun. 2010.
    DOI: 10.1016/j.ecss.2010.04.007
  10. K. Stergiou et al., “The Hellenic seas: physics, chemistry, biology and fisheries.”, Oceanogr. Lit. Rev., vol. 101, no. 8, pp. 654 - 657, Aug. 2010.
  11. K. Nittis, L. Perivoliotis, “Circulation and hydrological characteristics of the North Aegean Sea: a contribution from real-time buoy measurements,” Mediterr. Mar. Sci., vol. 3, no. 1, pp. 21 - 31, 2002.
    DOI: 10.12681/mms.255
  12. V. Zervakis, D. Georgopoulos, “Hydrology and circulation in the North Aegean (eastern Mediterranean) throughout 1997 and 1998,” Mediterr. Mar. Sci., vol. 3, no. 1, pp. 05 - 19, 2002.
    DOI: 10.12681/mms.254
  13. N. Skliris, A. Mantziafou, S. Sofianos, A. Gkanasos, “Satellite-derived variability of the Aegean Sea ecohydrodynamics,” Cont. Shelf Res., vol. 30, no. 5, pp. 403 - 418, Mar. 2010.
    DOI: 10.1016/j.csr.2009.12.012
  14. D. Velaoras et al., “Temperature and salinity variability in the Greek Seas based on POSEIDON stations time series: preliminary results,” Mediterr. Mar. Sci., vol. 14, no. 3, pp. 5 - 18, 2013.
    DOI: 10.12681/mms.446
  15. OpenStreetMap (OSM) contributors: Planet dump , 2015.
    Retrieved from: https://planet.openstreetmap.org
    Retrieved on: Jan. 10, 2020
  16. J. Lento, R. Harjula, “Separation of cesium from nuclear waste solutions with hexacyanoferrate (II) s and ammonium phosphomolybdate,” Solvent Extr. Ion Exch., vol. 5, no. 2, pp. 343 - 352, 1987.
    DOI: 10.1080/07366298708918571
  17. Reference Methods for Marine Radioactive Studies , IAEA Technical Report Series No. 118, IAEA, Vienna, Austria, 1970, pp. 129 - 149.
  18. Copernicus Marine Service Information: The Copernicus Marine Environment Monitoring Service (CMEMS) , Mercator Ocean Int., Toulouse, France, 2020.
    Retrieved from: https://marine.copernicus.eu/
    Retrieved on: Jan. 05, 2017
  19. The ERICA Assessment Tool: Environmental Risk from Ionizing Contaminants: assessment and management Version 1.3 , 2019.
    Retrieved from: http://www.erica-tool.com/
    Retrieved on: Jun. 01, 2021
  20. QGIS Development team, QGIS Geographic Information System v. 3.18.3 with GRASS 7.8.5, Open Source Geospatian Foundation Project, 2021.
    Retrieved from: http://qgis.osgeo.org
    Retrieved on: Jan. 10, 2020
  21. C. Camera, A. Bruggeman, P. Hadjinicolaou, S. Pashiardis, M. A. Lange, “Evaluation of interpolation techniques for the creation of gridded daily precipitation (1 × 1 km2); Cyprus, 1980–2010,” J. Geophys. Res. Atmos., vol. 119, no. 2, pp. 693 - 712, Jan. 2014.
    DOI: 10.1002/2013JD020611
  22. M. Szymanowski, M. Kryza, “Application of geographically weighted regression for modelling the spatial structure of urban heat island in the city of Wroclaw (SW Poland),” Procedia Environ. Sci., vol. 3, pp. 87 - 92, 2011.
    DOI: 10.1016/j.proenv.2011.02.016
  23. R. Delfanti et al., “Evolution and fluxes of 137Cs in the black sea/turkish straits system/north aegean sea,” J. Mar. Syst., vol. 135, pp. 117 - 123, Jul. 2014.
    DOI: 10.1016/j.jmarsys.2013.01.006

Study of the Chernobyl hot particles' destruction by soil micromycetes' influence

V. Zheltonozhsky, M. Zheltonozhskaya, T. Tugay, N. Kuzmenkova

Pages: 62-65

DOI: 10.37392/RapProc.2021.13

Radiation accidents, regular activities of nuclear power cycle enterprises, and nuclear weapons testing are sources of artificial high radiotoxicity actinides entering the environment. The actinides' long half-lives result in their constant accumulation on a planetary scale. Radioactive microparticles are one of the common forms of artificial actinides in soils. According to recent studies, soil micromycetes can increase the processes of hot particles destruction. A presented paper shows the ability of Cladosporium cladosporioides to transfer 241Am from hot particles containing 241Am and 137Cs to the mobile biologically available form. We observed the 241Am direct accumulation by micromycete mycelium for the first time. In contrast, the interaction of studied strains with 137Cs from hot particles was different.
  1. V.A. Kashparov et al., “Formation of hot particles during the Chernobyl nuclear power plant accident”, Nucl. Technol., vol. 114, no. 2, pp. 246–253, 1996.
    DOI: 10.13182/NT96-A35253
  2. B. Salbu et al., “Challenges associated with the behaviour of radioactive particles in the environment”, J. of Env. Radioact., vol. 186, pp. 101-115, Jun. 2018.
    DOI: 10.1016/j.jenvrad.2017.09.001
  3. T. Imanaka, G. Hayashi, S. Endo, “Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1,” J. Radiat. Res., vol. 56, suppl. 1, pp. i56 - i61, Dec. 2015.
    DOI: 10.1093/jrr/rrv074
    PMid: 26568603
    PMCid: PMC4732534
  4. Radioactive particles in the environment: sources, particle characterization and analytical techniques , IAEA-TECDOC-1663, Vienna, Austria: IAEA, 2011.
  5. Ю.А. Израэль и др., “Радиоактивное загрязнение природных сред в зоне аварии на Чернобыльской АЭС”, Метеорология и гидрология, но. 2, с. 5-18, 1987. (Izrael et al., “Radioactive contamination of the environment in the zone of Chernobyl atomic station,” Meteorol. Hydrol., vol. 2, pp. 5 - 18, 1987.)
  6. The Chernobyl Accident: Updating of INSAG-1, A Report by the International Nuclear Safety Group, Safety series no. 75-INSAG-7, Vienna, Austria: IAEA, 1992.
  7. M. D. Bondarkov et al., “Vertical migration of radionuclides in the vicinity of the Chernobyl Confinement Shelter,” Health Phys., vol. 101, no. 4, pp. 362 - 367, Oct. 2011.
    DOI: 10.1097/HP.0b013e3182166472
    PMid: 21878761
  8. Д. М. Бондарьков, И. Н. Вишневский, В. А. Желтоножский, М. В. Желтоножская, П. Н. Музалев, “Изучение поведения радионуклидов на сильнозагрязненных полигонах 5-километровой зоны чаэс,” Ядерна фізика та енергетика, т. 17, но. 4, с. 381 – 387, 2016. (D. M. Bondarkov, I. M. Vyshnevskyi, V. O. Zheltonozhskyi, M. V. Zheltonozhskaya, P. M. Muzalev, “Studies of radionuclides behavior on heavily contaminated 5-km zone of ChNPP,” Nucl. Phys. At. Energy, vol. 17, no. 4, pp. 381 - 387, 2016.)
    DOI: 10.15407/jnpae2016.04.381
  9. M. P. Neu, G. A. Icopini, H. Boukhalfa, “Plutonium speciation affected by environmental bacteria,” Radiochim. Acta, vol. 93, no. 11, pp. 705 - 714, Nov. 2005.
    DOI: 10.1524/ract.2005.93.11.705
  10. J. Dighton, T. Tugay, N. Zhdanova, “Fungi and ionizing radiation from radionuclides,” FEMS Microbiol. Lett., vol. 281, no. 2, pp. 109 - 120, Apr. 2008.
    DOI: 10.1111/j.1574-6968.2008.01076.x
    PMid: 18279333
  11. E. A. Lukyanova, E. V. Zakharova, L. I. Konstantinova, T. N. Nazina, “Sorption of radionuclides by microorganisms from a deep repository of liquid low-level waste,” Radiochemistry, vol. 50, no. 1, pp. 85 - 90, Feb. 2008.
    DOI: 10.1134/S1066362208010141
  12. A. J. Francis, C. J. Dodge, “Microbial mobilization of plutonium and other actinides from contaminated soil,” J. Environ. Radioact., vol. 150, pp. 277 - 285, Dec. 2015.
    DOI: 10.1016/j.jenvrad.2015.08.019
    PMid: 26406590
  13. Н. Н. Жданова, Т. И. Редчиц, В. А. Желтоножский, М. В. Желтоножская, Л. В. Садовников, “Способность ряда почвенных микроскопических грибов взаимодействовать с редкоземельными и транcурановыми элементами Eu-152 и Pu-239,” Иммунопатология, аллергол., инфектол.: Экология грибов и человека. Грибы экстремальных местообитаний и биодеструкторы , но. 1, с. 60, 2010. (N. N. Zhdanova, T. I. Redchits, V. A. Zheltonozhsky, M. V. Zheltonozhskaya, L. V. Sadovnikov, “The ability of some soil microscopic fungi to interact with rare-earth and transuranic elements of Eu-152 and Pu-239,” Immunopathol. Allergol. Infectol.: Ecol. fungi and hum. Mushrooms of extreme habitats and destructors, no.1, p. 60, 2010.)
    Retrieved from: http://www.immunopathology.com/ru/article.php?carticle=181
    Retrieved on: Jan. 18, 2021
  14. V. A. Zheltonozhsky, M. V. Zheltonozhskaya, M. D. Bondarkov, E. B. Farfán, “Spectroscopy of Radiostrontium in Fuel Materials Retrieved from the Chernobyl Nuclear Power Plant,” Health Phys., vol. 120, no. 4, pp. 378 – 386, Apr. 2021.
    DOI: 10.1097/hp.0000000000001349
    PMid: 33350713

Radon and Thoron

Open problems in radon research

P. Bossew, E. Petermann

Pages: 66-71

DOI: 10.37392/RapProc.2021.14

In spite of decades of scientific research about radon, which has resulted in an immense corpus of literature and deep knowledge about all aspects of radon physics, its behaviour in the environment, its measurement and its dangers and benefits, many technical challenges remain. In course of increasingly strict regulation, new challenges emerged, mostly related to quality assured decision making in radon abatement policy and to application of advanced statistical methodology. In this paper, we give an overview about a number of topics of radon research, whose discussion and deeper investigation we find, at the one hand, important for the sake of implementing efficient radon abatement policy and interesting scientifically, on the other, as they elucidate the complexity of environmental systems up to their interaction with society in a paradigmatic manner.
  1. WHO handbook on indoor radon: a public health perspective , WHO, Geneva, Switzerland, 2009.
    Retrieved from: www.who.int/publications/i/item/9789241547673
    Retrieved on: Jun. 21, 2021
  2. The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom .
    Retrieved from: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2014:013:FULL&from=EN
    Retrieved on: Aug. 10, 2021
  3. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards , GSR Part 3, 2014.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1578_web-57265295.pdf
    Retrieved on: Aug. 10, 2021
  4. MetroRADON: Metrology for radon monitoring , EURAMET, Braunschweig, Germany, 2017 – 2020.
    Retrieved from: http://metroradon.eu/
    Retrieved on: Aug. 10, 2021
  5. H. Haanes, H. K. Skjerdal, R. Mishra, A. L. Rudjord, “Outdoor measurements of thoron progeny in a 232Th-rich area with deposition-based alpha track detectors and corrections for wind bias,” J. Eur. Radon Association, vol. 2, Jun. 2021.
    DOI: 10.35815/radon.v2.6130
  6. Progetto Ribibui - Sviluppo di un protocollo standard per la misurazione della concentrazione di radon in grandi edifice , SUPSI: Dipartimento ambiente costruzioni e design, Lugano, Svizzera, 2017. ( Ribibui project - Development of a standard protocol for the measurement of radon concentration in large buildings , SUPSI: Department of Environment, Construction and Design, Lugano, Switzerland, 2017.)
    Retrieved from: www.supsi.ch/ist/eventi-comunicazioni/news/2017/2017-02-09.html
    Retrieved on: Aug. 10, 2021
  7. R. Trevisi et al., “Are radon priority areas, identified on survey in dwellings, representative of radon levels in workplaces?,” deposited at J. Eur. Radon Association, 2021.
  8. A. Tsapalov, K. Kovler, “Indoor radon regulation using tabulated values of temporal radon variation,” J. Environ. Radioact., vol. 183, pp. 59 – 72, Mar. 2018.
    DOI: 10.1016/j.jenvrad.2017.12.003
    PMid: 29306093
  9. European Atlas of Natural Radiation , 1st ed., European Commission, Luxembourg, Luxembourg, 2019.
    Retrieved from: https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiation/Download-page
    Retrieved on: Aug. 10, 2021
  10. Fundamental Safety Principles, SF-1, 2006.
    Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1273_web.pdf
    Retrieved on: Aug. 10, 2021
  11. E. Petermann, P. Bossew, “On the effectiveness of radon priority areas – a critical evaluation,” deposited at Sci. Total Environ., 2021.
  12. P. Bossew, E. Petermann, “What is the objective of radon abatement policy? - Revisiting the concept of radon priority areas,” in Proc. 15th Int. Workshop on the Geological Aspects of Radon Risk Mapping (GARRM-15) , Prague, Czech Republic, 2021.
  13. Radon Test Online , RadonTest Group, 2017.
    Retrieved from: https://radontest.online/
    Retrieved on: Aug. 11, 2021
  14. A. Tsapalov et al., “Involving schoolchildren in radon surveys by means of the “RadonTest” online system,” J. Environ. Radioact., vol. 217, 106215, Jun. 2020.
    DOI: 10.1016/j.jenvrad.2020.106215
    PMid: 32217247
  15. RadoNORM - Towards effective radiation protection based on improved scientific evidence and social considerations – focus on Radon and NORM , European Commission, Luxembourg, Luxembourg, 2020.
    Retrieved from: https://www.radonorm.eu/
    Retrieved on: Aug. 11, 2021
  16. M. Martell et al., “Evaluation of citizen science contributions to radon research,” J. Environ. Radioact., vol. 237, 106685, Oct. 2021.
    DOI: 10.1016/j.jenvrad.2021.106685
    PMid: 34265518
  17. S. Bonner, J. Ito, P. Franken, Safecast, Tokyo, Japan, 2011.
    Retrieved from: https://safecast.org/about/
    Retrieved on: Aug. 11, 2021
  18. M. Baskaran, Radon: A Tracer for Geological, Geophysical and Geochemical Studies , 1st ed., Cham, Switzerland: Springer, 2016.
    DOI: 10.1007/978-3-319-21329-3
  19. P. Bossew, M. Janik, “(2021): Seismic signals in radon time series,” presented at the 7th Int. Conf. Time Series and Forecasting (ITISE 2021), Gran Canaria, Spain, Jul. 2021.
  20. E. Petermann, H. Meyer, M. Nussbaum, P. Bossew, “Mapping the geogenic radon potential for Germany by machine learning,” Sci. Total Environ., vol. 754, 142291, Feb. 2021.
    DOI: 10.1016/j.scitotenv.2020.142291
    PMid: 33254926
  21. E. Petermann, P. Bossew, “Mapping indoor radon hazard in Germany: The geogenic component,” Sci. Total Environ., vol. 780, 146601, Aug. 2021.
    DOI: 10.1016/j.scitotenv.2021.146601
    PMid: 33774294
  22. P. Bossew, “Mapping the Geogenic Radon Potential and Estimation of Radon Prone Areas in Germany,” Radiat. Emerg. Med., vol. 4, no. 2, pp. 13 – 20, Aug. 2015.
    Retrieved from: http://crss.hirosaki-u.ac.jp/rem_archive/rem4-2
    Retrieved on: Aug. 10, 2021
  23. P. Bossew, “Local probability of indoor radon concentration to exceed a threshold, estimated from the geogenic radon potential,” Nucl. Technol. Radiat. Prot., vol. 32, no. 1, pp. 70 – 76, 2017.
    DOI: 10.2298/NTRP1701070B
  24. P. Bossew, “Stochastic dependence of Rn-related quantities,” in Proc. First East European Radon Symposium (FERAS 2012), Cluj-Napoca, Romania, 2012, pp. S44 – S55.
    Retrieved from: www.nipne.ro/rjp/2013_58_Suppl.html
    Retrieved on: Aug. 10, 2021
  25. P. Bossew, “Determination of radon prone areas by optimized binary classification,” J. Environ. Radioact., vol. 129, pp. 121 – 132, Mar. 2014.
    DOI: 10.1016/j.jenvrad.2013.12.015
    PMid: 24412776


Pablo Vacas Arquero, Víctor Manuel Expósito Suárez, Abel Milena Pérez, Francisco Piñero García, Mari Ángeles Ferro García

Pages: 72–76

DOI: 10.37392/RapProc.2021.15

226Ra is a natural radioactive isotope belonging to the natural radioactive family of 238U. Its radioactive decay causes the emanation of a radioactive gas, 222Rn. These isotopes are widely distributed in a natural and heterogeneous way in the earth's crust, so their presence in groundwater has a natural origin where their accumulation or concentration depends on several of factors such as: chemical nature of the rocks that surround the aquifer, geological characteristics of the land, the physicochemical processes that occur in the aquifer, among others, as well as an anthropogenic origin (due to mining activities or the use of fertilizers). Their determination in drinking water is important because they are a source of internal contamination with a high radiological health risk, so are the short-term high-energy alpha emitters Radon decay products. The purpose of this work is to determine the activity concentration of 226Ra and its daughter 222Rn in non-treated drinking water from sources distributed along the coast and Alpujarra of Granada to know their environmental implications, to determine their natural or anthropogenic origin, as well as to know if they comply the limits established by regulatory bodies (Directive 2013/51 / EURATOM and RD 314/2016) for their consumption. The Radiometric Techniques used to monitor both radionuclides have been Gamma Spectrometry with High Purity Intrinsic Germanium Detector (HPGe), and Liquid Scintillation Counter (TRI-CARB 1500).
  1. Naciones Unidas. (27 de junio a 1 de julio de, 2016). A/71/46. Informe del Comité Científico de las Naciones Unidas para el Estudio de los Efectos de las Radiaciones Atómicas . (United Nations. (27 Jun.-1 Jul. 2016). A/71/46. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation .)
    Retrieved from: https://www.unscear.org/docs/GAreports/2016/A-71-46_s_V1604699.pdf
    Retrieved on: Dec. 15, 2020
  2. Radiaciones ionizantes: utilización y riesgos II , X. O. Aramburu, J. J. Bisbal, Eds., 2da ed., Barcelona, España: Edicions UPC, 1996. (Ionizing radiation: use and risks II, X. O. Aramburu, J. J. Bisbal, Eds., 2nd ed., Barcelona, Spain: UPC Editions, 1996.)
  3. C. S. Fernández, “Análisis de la influencia in vitro de bajas dosis de radiación producidas por 222Rn sobre proliferación celular, apoptosis y respuesta a agentes citotóxicos,” Doctor. tesis, Universidad de Cantabria, Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Santander, España, 2002. (C. S. Fernández, “Analysis of the in vitro influence of low radiation doses produced by 222Rn on cell proliferation, apoptosis and response to cytotoxic agents,” Ph.D. thesis, University of Cantabria, Dept. of Earth Sciences and Physics of Condensed Matter, Santander, Spain, 2002.)
    Retrieved from: http://hdl.handle.net/10803/10609
    Retrieved on: Dec. 15, 2020
  4. Dosis de radiación , Consejo de Seguridad Nuclear (CSN), Madrid, España, 2019. (Radiation dose, Nuclear Safety Council (CSN), Madrid, Spain, 2019.)
    Retrieved from: https://www.csn.es/documents/10182/914805/Protecci%C3%B3n%20radiol%C3%B3gica
    Retrieved on: Dec. 15, 2020
  5. WHO handbook on indoor radon: a public health perspective , WHO, Geneva, Switzerland, 2009.
    Retrieved from: https://apps.who.int/iris/bitstream/handle/10665/44149/9789241547673_eng.pdf
    Retrieved on: Dec. 15, 2020
  6. IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans: Man-made Mineral Fibres and Radon , vol. 43, IARC, Lyon, France, 1988.
    Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK316364/pdf/Bookshelf_NBK316364.pdf
    Retrieved on: Dec. 15, 2020
  7. D. Vienneau et al., “Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland,” Environ. Health Perspect., vol. 125, no. 6, 067009, Jun. 2017.
    DOI: 10.1289/EHP825
    PMid: 28686556
    PMCid: PMC5744747
  8. V. Rericha, M. Kulich, R. Rericha, D. L. Shore, D. P. Sandler, “Incidence of leukemia, lymphoma, and multiple myeloma in Czech uranium miners: a case-cohort study,” Environ. Health Perspect., vol. 114, no. 6, pp. 818 – 822, Jun. 2006.
    DOI: 10.1289/ehp.8476
    PMid: 16759978
    PMCid: PMC1480508
  9. S. C. González, “Estudio del comportamiento del 222Rn en los procesos de recarga-descarga en acuíferos: simulación en laboratorio y aplicación a un caso real,” Doctor. tesis, Universidad de Cantabria, Departamento de Ciencias Médicas y Quirúrgicas, Santander, España, 2017. (S. C. González, “Study of the behavior of 222Rn in aquifer recharge-discharge processes: laboratory simulation and application to a real case,” Ph.D. thesis, University of Cantabria, Dept. of Medical and Surgical Sciences, Santander, Spain, 2017.)
    Retrieved from: https://repositorio.unican.es/xmlui/bitstream/handle/10902/13308/Tesis%20SCG.pdf?sequence=1&isAllowed=y
    Retrieved on: Dec. 15, 2020
  10. Boletín oficial de Estado del gobierno de España. (Feb. 21, 2003). BOE-A-2003-3596. Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano . (State official bulletin of Spain government. (Feb. 21, 2003). BOE-A-2003-3596. Royal Decree 140/2003, of February 7, which establishes the sanitary criteria for the quality of water for human consumption.
    Retrieved from: https://www.boe.es/eli/es/rd/2003/02/07/140/con
    Retrieved on: Aug. 10, 2021
  11. Boletín oficial de Estado del gobierno de España. (Jul. 30, 2016). BOE-A-2016-7340. Real Decreto 314/2016, de 29 de julio, por el que se modifican el Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano, el Real Decreto 1798/2010, de 30 de diciembre, por el que se regula la explotación y comercialización de aguas minerales naturales y aguas de manantial envasadas para consumo humano, y el Real Decreto 1799/2010, de 30 de diciembre, por el que se regula el proceso de elaboración y comercialización de aguas preparadas envasadas para el consumo humano . (State official bulletin of Spain government. (Jul. 30, 2016). BOE-A-2016-7340. Royal Decree 314/2016, of July 29, which modifies Royal Decree 140/2003, of February 7, which establishes the sanitary criteria for the quality of water for human consumption, Royal Decree 1798 / 2010, of December 30, which regulates the exploitation and commercialization of natural mineral waters and spring waters packaged for human consumption, and Royal Decree 1799/2010, of December 30, which regulates the process of elaboration and commercialization of prepared waters packaged for human consumption. )
    Retrieved from: https://www.boe.es/eli/es/rd/2016/07/29/314
    Retrieved on: Aug. 10, 2021
  12. The Council of European Union. (Oct. 22, 2013). Council Directive 2013/51/EURATOM laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption .
    Retrieved from: https://eur-lex.europa.eu/eli/dir/2013/51/oj
    Retrieved on: Aug. 10, 2021
  13. A. C. García, “Factores condicionantes de la radiactividad medioambiental en áreas del S.E. peninsular,” Doctor. tesis, Universidad de Granada, Departamento de Química Inorgánica, Granada, España, 2000. (A. C. García, “Conditioning factors of environmental radioactivity in areas of the peninsula,” Ph.D. thesis, University of Granada, Dept. of Inorganic Chemistry, Granada, Spain, 2000.)
    Retrieved from: https://digibug.ugr.es/handle/10481/28637
    Retrieved on: Jan. 20, 2021
  14. A. Milena-Pérez et al., “Uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes,” J. Environ. Radioact., vol. 227, 106503, Feb. 2021.
    DOI: 10.1016/j.jenvrad.2020.106503
    PMid: 33296862
  15. P. B. Hahn, S. H. Pia, Determination of Radon in Drinking Water by Liquid Scintillation Counting , EPA Method 913.0, U.S. Enviromental Protection Agency (EPA), Las Vegas (NV), USA, 1991.
  16. S. Y. F. Chu, L. P. Ekström, R. B. Firestone, The Lund/LBNL Nuclear Data Search: Nuclide Search, LBNL, Berkeley (CA), USA, 1999.
    Retrieved from: http://nucleardata.nuclear.lu.se/toi/nucSearch.asp
    Retrieved on: Jan. 20, 2021
  17. J. Michael, “Relationship of Radium and Radon with Geological Formations,” in Radon, Radium and Uranium in Drinking Water, C. R. Cothern, P. A. Rebers, Eds., 1st ed., Chelsea (MI), USA: Lewis Publishers, 1990, ch. 7, pp. 83 – 95.
    Retrieved from: http://library.lol/main/2AC433245734EA9F9685548A0214417A
    Retrieved on: Feb. 12, 2021

Radiation detectors

Development of techniques for clearance of spent sealed nuclear medicine calibration sources

Dimitrios Mavrikis, Alexandra Ioannidou, Anastasia Savidou

Pages: 77–81

DOI: 10.37392/RapProc.2021.16

The present work concerns the development of techniques which can be used to verify clearance of Ge-68/ Ga-68 and Co-57 sealed radioactive sources. These sources are used for the calibration of various nuclear medicine systems like Gamma camera and PET imaging. There are several types of such sources of different characteristics and geometry i.e. linear, area, volume, while after their useful life these sealed sources need to be kept in control for decay till meeting the clearance criteria. The techniques aim to determine the activity of the sources after storage for appropriate time span until the clearance criteria are met and are based on Monte Carlo simulation using the MCNPX code for evaluation of the 3x3 NaI (Tl) scintillator detector efficiency. A preliminary work was done for two types of sealed radioactive sources: i) a line source containing Ge-68/Ga-68, ii) a flood source containing Co-57. However, the determined activities were underestimated by 13.6% for Co-57 flood source and 26.9% for Ge-68 line source, compared to the source’s nominal activities. In the present study, the accuracy of the previously developed techniques has been improved by detailed detector characterization.
  1. T. Siarafera et al., “Development of techniques based on Monte Carlo simulations for clearance of Co-57 and Ge-68/Ga-68 sealed radioactive sources,” in Proc. 27th Annu. Symp. Hellenic Nuclear Physics Society (HNPS 2018) , Athens, Greece, 2018.
    DOI: 10.12681/hnps.1819
  2. GenieTM 2000 Gamma Analysis Spectroscopy Software , Canberra Industries, Inc., Meriden (CT), USA.
  3. G. Gilmore, Practical Gamma-Ray Spectrometry, 2nd ed., Chichester, England: Wiley & Sons, 2008.
    Retrieved from: http://library.lol/main/1903C10635634147A560B5F107E0D42E
    Retrieved on:: Jan. 5, 2021
  4. R. B. Firestone, Table of Isotopes, 8th ed., Hoboken (NJ), USA: Wiley Interscience, 1996.
    Retrieved from: http://library.lol/main/ACC5F0C59EA8E3E1FE349EFEB1487E01
    Retrieved on:: Nov. 20, 2020
  5. L. Done, M-R. Ioan, “Minimum Detectable Activity in gamma spectrometry and its use in low level activity measurements,” Appl. Rad. Isot., vol. 114, pp. 28 – 32, Aug. 2016.
    DOI: 10.1016/j.apradiso.2016.05.004
  6. C. A. Kalfas, M. Axiotis, C. Tsabaris, “SPECTRW: A software package for nuclear and atomic spectroscopy,” Nucl. Instrum. Methods Phys. Res. A, vol. 830, pp. 265 – 274, Sep. 2016.
    DOI: 10.1016/j.nima.2016.05.098
  7. ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΙΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ. (Μαρ. 6, 2001). Υ.Α. 1014 (ΦΟΡ) 94/2001 (ΦΕΚ 216/Β` 6.3.2001). Έγκριση Κανονισμών Ακτινοπροστασίας . (Gazette of the government of the Hellenic Republic. (Mar. 6, 2001). WILL. 1014 (FOR) 94/2001 (Government Gazette 216 / B` 6.3.2001). Approval of Radiation Protection Regulations .)
    Retrieved from: https://www.elinyae.gr/sites/default/files/2019-07/b216_01.1127808638026.pdf
    Retrieved on:: Dec. 22, 2020
  8. Der Schweizerische Bundesrat. (Apr. 26, 2017).Strahlenschutzverordnung (StSV) 814.501 , Anhang 2 (Art. 2 Abs. 1 Bst. j, l und m sowie 194 Abs. 3.) (The Swiss Federal Council. (Apr. 26, 2017). Radiological Protection Ordinance (RPO) 814.501, Appendix 2 (Art. 2 Paragraph 1 Letters j, l and m as well as 194 Paragraph 3. )
    Retrieved from: https://www.fedlex.admin.ch/eli/cc/2017/502/de
    Retrieved on:: Jan. 22, 2021

VOXES: a new HAPG mosaic crystal based Von Hamos spectrometer for millimetric sources

A. Scordo, V. De Leo, C. Curceanu, M. Miliucci, F. Sirghi

Pages: 82–86

DOI: 10.37392/RapProc.2021.17

Von Hamos (VH) spectrometers are widely used in several fields, ranging from fundamental physics to very different types of practical applications. However, these type of Bragg spectrometers are usually operated in high rate – high resolution experiments, where the typical source size can be as low as few tens of microns. The VOXES collaboration at the INFN Laboratories of Frascati recently developed a VH spectrometer, making use of Highly Annealed Pyrolitic Graphite (HAPG) mosaic crystals and an X-ray beam optics optimization, which could be used for source sizes up to few mm in the Bragg plane, some tens of mm in the sagittal plane and, if gaseous sources are used, several tens of cm in the X-ray propagation direction. Such kind of spectrometer could be used in a wide range of applications in several fields, going from fundamental physics, synchrotron radiation and X-FEL applications, astronomy, medicine and industry to hadronic physics experiments, measuring exotic atoms with extremely high precision. We present the results obtained with the VOXES spectrometer, in terms of spectral resolution and achievable precision, for a 206.7 mm curvature radius HAPG crystal using Fe K1,2 transition lines.
  1. H. Legall, et al., “A new generation of X-ray optics based on pyrolitic graphite,” in Proc. 28th Int. Conf. Free Electron Laser (FEL 2006), Berlin, Germany, 2006, pp. 798 – 801.
    Retrieved from: https://accelconf.web.cern.ch/f06/PAPERS/FRAAU04.PDF
    Retrieved on: Jan. 12, 2021
  2. R. Barnsley et al., “Versatile high resolution crystal spectrometer with X-ray charge coupled device detector,” Rev. Sci. Instrum., vol. 74, no. 4, pp. 2388 - 2408, Apr. 2003.
    DOI: 10.1063/1.1533105
  3. A. A. Antonov et al., “First results on application of short-focus monochromators from formed pyrolytic graphite for X-ray fluorescent analysis using synchrotron radiation,” Rev. Sci. Instrum., vol. 60, no. 7, pp. 2462 – 2463, Jul. 1989.
    DOI: 10.1063/1.1140699
  4. Optigraph: Optigraph References, Berlin, Germany.
    Retrieved from: http://www.optigraph.eu/references.html#ref_07
    Retrieved on: Jan. 12, 2021
  5. M. S. del Rio et al., “Focusing properties of mosaic crystals,” inProc.Int. Symp. Optical Science, Engineering, and Instrumentation (SPIE 1998), San Diego (CA), USA, 1998, pp. 246 – 255.
    DOI: 10.1117/12.332512
  6. M. Gerlach et al., “Characterization of HAPG mosaic crystals using synchrotron radiation,” J. Appl. Crystallogr., vol. 48, no. 5, pp. 1381 – 1390, Oct. 2015.
    DOI: 10.1107/S160057671501287X
  7. A. Scordo, C. Curceanu, M. Miliucci, F. Sirghi, J. Zmeskal, “Pyrolitic Graphite Mosaic Crystal Thickness and Mosaicity Optimization for an Extended Source von Hamos X-ray Spectrometer,” Condens. Matter, vol. 4, no. 2, 38, Jun. 2019.
    DOI: 10.3390/condmat4020038
  8. G. E. Ice, C. J. Sparks Jr., “Mosaic crystal X-ray spectrometer to resolve inelastic background from anomalous scattering experiments,” Nucl. Instrum. Methods Phys. Res. A, vol. 291, no. 1 - 2, pp. 110 – 116, May 1990.
    DOI: 10.1016/0168-9002(90)90043-6
  9. H. Legall, H. Stiel, V. Arkadiev, A. A. Bjeoumikhov, “High spectral resolution X-ray optics with highly oriented pyrolytic graphite,” Opt. Express, vol. 14, no. 10, pp. 4570 – 4576, May 2006.
    DOI: 10.1364/oe.14.004570
    PMid: 19516609
  10. U. Zastrau et al., “Focal aberrations of large-aperture HOPG von-Hamos X-ray spectrometers,” J. Inst., vol. 7, no. 9, P09015, Sep. 2012.
    DOI: 10.1088/1748-0221/7/09/P09015
  11. U. Zastrau et al., “Characterization of strongly-bent HAPG crystals for von-Hámos X-ray spectrographs,” J. Inst., vol. 8, no. 10, P10006, Oct. 2013.
    DOI: 10.1088/1748-0221/8/10/P10006
  12. L. V. Von Hamos, “Röentgenspektroskopie und Abbildung mittels gekrümmter Kristallreflektoren. I. Geometrisch-optische Betrachtungen,” Ann. Phys. (Berl.), vol. 409, no. 6, pp. 716 – 724, Jan. 1933. (L. V. Von Hamos, “X-ray spectroscopy and imaging using curved crystal reflectors. I. Geometric-optical considerations,” Ann. Phys. (Berl.), vol. 409, no. 6, pp. 716 – 724, Jan. 1933.)
    DOI: 10.1002/andp.19334090608
  13. A. P. Shevelko, Yu. S. Kasyanov, O. F. Yakushev, L. V. Knight, “Compact focusing von Hamos spectrometer for quantitative X-ray spectroscopy,” Rev. Sci. Instrum., vol. 73, no. 10, pp. 3458 - 3463, Oct. 2002.
    DOI: 10.1063/1.1502013
  14. L. Anklamm et al., “A novel von Hamos spectrometer for efficient X-ray emission spectroscopy in the laboratory,” Rev. Sci. Instrum., vol. 85, no. 5, 053110, May 2014.
    DOI: 10.1063/1.4875986
  15. A. Scordo et al., “High resolution multielement XRF spectroscopy of extended and diffused sources with a graphite mosaic crystal based Von Hamos spectrometer,” J. Anal. At. Spectrom., vol. 35, no. 1, pp. 155 – 168, Jan. 2020.
    DOI: 10.1039/C9JA00269C

High precision kaonic atoms X-ray spectroscopy at the DAФNE collider: The SIDDHARTA-2 experiment

M. Miliucci et al.

Pages: 87–90

DOI: 10.37392/RapProc.2021.18

X-ray spectroscopic measurements on light kaonic atoms are fundamental tool for the investigation of the low-energy quantum chromodynamics (QCD) in the strangeness sector, being a direct probe of the kaon-nucleus interaction at threshold without the need of an extrapolation at low energy as in the case of scattering experiments. In this framework, after the successful measurement of the kaonic hydrogen X-ray transition to the fundamental level in 2009, the SIDDHARTA-2 Collaboration is now ready to perform the first measurement of kaonic deuterium 2p -> 1s transitions, planned for 2021 – 2022 at LNF-INFN. This paper describes the SIDDHARTA-2 scientific case and the experimental apparatus installed in its reduced form called SIDDHARTINO at the DAΦNE collider, during the preparatory run before the kaonic deuterium data taking campaign.
  1. C. Curceanu et al., “The modern era of light kaonic atom experiments,” Rev. Mod. Phys., vol. 91, no. 2, 025006, Jun. 2019.
    DOI: 10.1103/RevModPhys.91.025006
  2. R. De Pietri et al., “Merger of compact stars in the two-families scenario,” Astrophys. J., vol. 881, no. 2, 122, Aug. 2019.
    DOI: 10.3847/1538-4357/ab2fd0
  3. C. Curceanu et al., “Kaonic atoms to investigate global symmetry breaking,” Symmetry, vol. 12, no. 4, 547, Apr. 2020.
    DOI: 10.3390/sym12040547
  4. M. Merafina, F. G. Saturni, C. Curceanu, R. Del Grande, K. Piscicchia, “Self-gravitating strange dark matter halos around galaxies,” Phys. Rev. D, vol. 102, no. 8, 083015, Oct. 2020.
    DOI: 10.1103/PhysRevD.102.083015
  5. M. Bazzi et. al., “A new measurement of kaonic hydrogen X-rays,” Phys. Lett. B, vol. 704, no. 3, pp. 113 – 117, Oct. 2011.
    DOI: 10.1016/j.physletb.2011.09.011
  6. M. Bazzi et al., “Kaonic hydrogen X-ray measurement in SIDDHARTA,” Nucl. Phys. A, vol. 881, pp. 88 – 97, May 2012.
    DOI: 10.1016/j.nuclphysa.2011.12.008
  7. U. G. Meißner, U. Raha, A. Rusetsky, “Spectrum and decays of kaonic hydrogen,” Eur. Phys. J. C, vol. 35, no. 3, pp. 349 – 357, Jun. 2004.
    DOI: 10.1140/epjc/s2004-01859-4
  8. M. Doring, U. G. Meißner, “Kaon–nucleon scattering lengths from kaonic deuterium experiments revisited,” Phys. Lett. B, vol. 704, no. 5, pp. 663 – 666, Oct. 2011.
    DOI: 10.1016/j.physletb.2011.09.099
  9. C. Milardi et al., “Preparation Activity for the SIDDHARTA-2 Run at DAΦNE,” in Proc. 9th Int. Particle Accelerator Conf. (IPAC 2018), Vancouver, Canada, 2018, pp. 334 – 337.
    DOI: 10.18429/JACoW-IPAC2018-MOPMF088
  10. M. Zobov et al., “Test of “Crab-Waist” Collisions at the DAΦNE Φ Factory,” Phys. Rev. Lett., vol. 104, no. 17, 174801, Apr. 2010.
    DOI: 10.1103/PhysRevLett.104.174801
    PMid: 20482112
  11. M. Miliucci et al., “Energy Response of Silicon Drift Detectors for Kaonic Atom Precision Measurements,” Condens. Matter, vol. 4, no. 1, 31, Mar. 2019.
    DOI: 10.3390/condmat4010031
  12. M. A. Iliescu et al., “Reducing the MIPs Charge-Sharing Background in X-Ray Spectroscopic SDD Arrays,” IEEE Trans. Instrum. Meas., vol. 70, 9507807, Mar. 2021.
    DOI: 10.1109/TIM.2021.3068149
  13. M. Miliucci et al., “Silicon drift detectors system for high-precision light kaonic atoms spectroscopy,” Meas. Sci. Technol., vol. 32, no. 9, 095501, Sep. 2021.
    DOI: 10.1088/1361-6501/abeea9
  14. M. Bazzi et al., “Characterization of the SIDDHARTA-2 second level trigger detector prototype based on scintillators coupled to a prism reflector light guide,” J. Inst., vol. 8, no. 11, T11003, Nov. 2013.
    DOI: 10.1088/1748-0221/8/11/t11003
  15. N. V. Shevchenko, “Near-threshold K-d scattering and properties of kaonic deuterium,” Nucl. Phys. A, vol. 890 - 891, pp. 50 – 61, Oct. 2012.
    DOI: 10.1016/j.nuclphysa.2012.07.010
  16. M. Skurzok et al., “Characterization of the SIDDHARTA-2 luminosity monitor,” J. Inst., vol. 15, no. 10, P10010, Oct. 2020.
    DOI: 10.1088/1748-0221/15/10/p10010

Material Science

Frequency Dependent Electrical Characteristics of Al/SiO2/SiNWs/n-Si MOS Capacitors

Alex Mutale, Ercan Yilmaz

Pages: 91–96

DOI: 10.37392/RapProc.2021.19

In this work, the frequency dependent electrical characteristics of Al/SiO2/SiNWs/n-Si MOS capacitors were investigated. The electrical properties of the capacitors were calculated from the capacitance-voltage (C-V) and conductance-voltage (Gm/ɷ-V) measurements for several frequencies ranging from 50kHz to 1MHz. Our experimental results showed that both frequency and voltage variations had a significant impact on the C-V and Gm/ɷ-V characteristics. The C-V characteristics were found to decrease with an increase in the applied voltage frequency due to the distribution of the interface states (N it) within the oxide layer. The Gm /ɷ-V characteristics were also found to have peaks and the peaks increased with an increase in the applied voltage frequency except for 50kHz and 100kHz. This was caused by the existence of series resistance (Rs) and Nit. We have also studied the frequency dependence on the electrical parameters such as Rs, N it, doping concentration (ND), and barrier height (ФB). The values of R s were found to decrease with increasing frequency, while the values of Nit, ND and (ФB) were also found to increase with increasing applied frequency.
  1. A. R. Wazzan, “MOS (Metal Oxide Semiconductor) Physics and Technology,” Nucl. Technol., vol. 74, no. 2, pp. 235 – 237, Aug. 1986.
    DOI: 10.13182/nt86-a33811
  2. D. A. Neamen, Semiconductor Physics and Devices, 3rd ed., New York (NY), USA: McGraw-Hill, 2003.
    Retrieved from: http://www.fulviofrisone.com/attachments/article/403/Semiconductor%20Physics%20And%20Devices%20-%20Donald%20Neamen.pdf
    Retrieved on: Nov. 25, 2020
  3. I. Leontis, M. A. Botzakaki, S. N. Georga, A. G. Nassiopoulou, “Study of Si Nanowires Produced by Metal-Assisted Chemical Etching as a Light-Trapping Material in n-type c-Si Solar Cells,” ACS Omega, vol. 3, no. 9, pp. 10898 – 10906, Sep. 2018.
    DOI: 10.1021/acsomega.8b01049
    PMid: 31459200
    PMCid: PMC6645058
  4. R. Nezasa, Y. Kurokawa, N. Usami, “Evaluation of Si Nanowire MOS Capacitor Using High-k Dielectric Materials,” in Proc. IEEE 18th Int. Conf. Nanotechnol. (IEEE-NANO), Cork, Ireland, 2018, pp. 2018 – 2021.
    DOI: 10.1109/NANO.2018.8626356
  5. E. Hourdakis, A. Casanova, G. Larrieu, A. G. Nassiopoulou, “Three-dimensional vertical Si nanowire MOS capacitor model structure for the study of electrical versus geometrical Si nanowire characteristics,” Solid State Electron., vol. 143, pp. 77 – 82, May 2018.
    DOI: 10.1016/j.sse.2017.11.003
  6. P. H. Morel et al., “Ultra high density three dimensional capacitors based on Si nanowires array grown on a metal layer,” Appl. Phys. Lett., vol. 101, no. 8, 083110, Aug. 2012.
    DOI: 10.1063/1.4746762
  7. M. Naffeti, P. A. Postigo, R. Chtourou, M. A. Zaïbi, “Elucidating the effect of etching time key-parameter toward optically and electrically-active silicon nanowires,” Nanomaterials, vol. 10, no. 3, 404, Feb. 2020.
    DOI: 10.3390/nano10030404
    PMid: 32106503
    PMCid: PMC7152846
  8. J. Wu et al., “RF characterization of vertical wrap-gated InAs/High-κ nanowire capacitors,” IEEE Trans. Electron Devices, vol. 63, no. 2, pp. 584 – 589, Feb. 2016.
    DOI: 10.1109/TED.2015.2506040
  9. C. Zhang, M. Xu, P. D. Ye, X. Li, “A distributive-transconductance model for border traps in III-V/high-k MOS capacitors,” IEEE Electron Device Lett., vol. 34, no. 6, pp. 735 – 737, Jun. 2013.
    DOI: 10.1109/LED.2013.2255256
  10. N. Bachtouli, S. Aouida, B. Bessais, “Formation mechanism of porous silicon nanowires in HF/AgNO3 solution,” Microporous Mesoporous Mater., vol. 187, pp. 82 – 85, Mar. 2014.
    DOI: 10.1016/j.micromeso.2013.11.048
  11. S. Ngqoloda, “Vertically aligned silicon nanowires synthesised by metal assisted chemical etching for photovoltaic applications,” M.Sc. thesis, University of the Western Cape, Dept. of Physics, Bellville, South Africa, 2015.
    Retrieved from: http://etd.uwc.ac.za/xmlui/handle/11394/4872
    Retrieved on: Feb. 18, 2021
  12. A. M. Akbaş, O. Çiçek, Ş. Altındal, Y. Azizian-Kalandaragh, “Frequency Response of C–V and G/ω-V Characteristics of Au/(Nanographite-doped PVP)/n-Si Structures,” J. Mater. Sci. Mater. Electron., vol. 32, no. 1, pp. 993 – 1006, Jan. 2021.
    DOI: 10.1007/s10854-020-04875-6
  13. A. Mutale, S. C. Deevi, E. Yilmaz, “Effect of annealing temperature on the electrical characteristics of Al/Er2O3/n-Si/Al MOS capacitors,” J. Alloys Compd., vol. 863, 158718, May 2021.
    DOI: 10.1016/j.jallcom.2021.158718
  14. A. Tataroğlu, Ş. Altındal, Y. Azizian-Kalandaragh, “C-V-f and G/ω-V-f characteristics of Au/(In2O3-PVP)/n-Si (MPS) structure,” Physica B Condens. Matter, vol. 582, 411996, Apr. 2020.
    DOI: 10.1016/j.physb.2020.411996
  15. S. Maurya, “Effect of zero bias Gamma ray irradiation on HfO2 thin films,” J. Mater. Sci. Mater. Electron., vol. 27, no. 12, pp. 12796 – 12802, Dec. 2016.
    DOI: 10.1007/s10854-016-5412-6
  16. Ç. G. Türk, S. O. Tan, Ş. Altındal, B. İnem, “Frequency and voltage dependence of barrier height, surface states, and series resistance in Al/Al2O3/p-Si structures in wide range frequency and voltage,” Physica B Condens. Matter, vol. 582, 411979, Apr. 2020.
    DOI: 10.1016/j.physb.2019.411979
  17. A. Aktağ, A. Mutale, E. Yılmaz, “Determination of frequency and voltage dependence of electrical properties of Al/(Er2O3/SiO2/n-Si)/Al MOS capacitor,” J. Mater. Sci. Mater. Electron., vol. 31, no. 11, pp. 9044 – 9051, Jun. 2020.
    DOI: 10.1007/s10854-020-03438-z
  18. A. Tataroǧlu, G. G. Güven, S. Yilmaz, A. Büyükbas, “Analysis of barrier height and carrier concentration of MOS capacitor using C-f and G/ω-f measurements,” Gazi Univ. J. Sci., vol. 27, no. 3, pp. 909 – 915, 2014.
    Retrieved from: https://dergipark.org.tr/tr/download/article-file/83667
    Retrieved on: Feb. 10, 2021
  19. A. Kahraman, S. C. Deevi, E. Yilmaz, “Influence of frequency and gamma irradiation on the electrical characteristics of Er2O3, Gd2O3, Yb2O3, and HfO2 MOS-based devices,” J. Mater. Sci., vol. 55, no. 19, pp. 7999 – 8040, Jul. 2020.
    DOI: 10.1007/s10853-020-04531-8
  20. S. Abubakar, E. Yilmaz, “Effects of series resistance and interface state on electrical properties of Al/Er2O3/Eu2O3/SiO2/n-Si/Al MOS capacitors,” Microelectron. Eng., vol. 232, 111409, Aug. 2020.
    DOI: 10.1016/j.mee.2020.111409
  21. E. Yükseltük, M. Çotuk, S. Zeyrek, Ş. Altındal, M. M. Bülbül, “The Investigation of Frequency and Voltage Dependence of Electrical Characteristics in Al/P3HT/p-Si (MPS) Structures,” Mater. Today Proc., vol. 18, pp. 1842 – 1851, 2019.
    DOI: 10.1016/j.matpr.2019.06.672

Medical Physics


Milena Zivkovic, Tatjana B. Miladinovic, Dragana Krstic

Pages: 97–100

DOI: 10.37392/RapProc.2021.20

For the first time, a comparison of two programs, the European program FOTELP and the American program MCNP, are presented in this research. For this purpose, a numerical experiment with concentric spheres filled with water and a selected electron source of 10 MeV was performed. The deposited energy in concentric spheres was determined, with the radius of the first 0.5 cm and the last 15 cm. The deposited energy was determined, with the discrepancy between these two programs ranging from 0.4 to 17%. The increasing of application Monte Carlo's technique in medicine relies on voxelized geometric shapes that are obtained by voxelization or from CT data. These programs could be used as general-purpose software packages in dosimetry and radiology. Melanoma of the eye was used as an example to illustrate the use of CT data and voxelized geometry in radiotherapy. Domestic program FOTELP (R. Ilić) and derived versions from it, including the package for brachytherapy, is already being applied at the Institute for Nuclear Research, Russian Academy of Sciences, Laboratory for Medical Physics.
  1. D. W. O. Rogers, “Fifty years of Monte Carlo simulations for medical physics,” Phys. Med. Biol., vol. 51, no. 13, pp. R287 – R301, Jul.2006.
    DOI: 10.1088/0031-9155/51/13/r17
    PMid: 16790908
  2. B. E. Klein, R. Klein, K. L. Linton, T. Franke, “Diagnostic x-ray exposure and lens opacities: the Beaver Dam Eye Study,” Am. J. Public Health, vol. 83, no. 4, pp. 588 – 590, Apr. 1993.
    DOI: 10.2105/ajph.83.4.588
    PMid: 8460743
    PMCid: PMC1694473
  3. G. Chodick et al., “Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists,” Am. J. Epidemiol., vol. 168, no. 6, pp. 620 – 631, Sep. 2008.
    DOI: 10.1093/aje/kwn171
    PMid: 18664497
    PMCid: PMC2727195
  4. ICRP Statement on Tissue Reactions and Early and Late Effects of Radiation in Normal Tissues and Organs – Threshold Doses for Tissue Reactions in a Radiation Protection Context , vol. 41, ICRP Publication no. 118, ICRP, Ottawa, Canada, 2012.
    Retrieved from: https://www.icrp.org/publication.asp?id=ICRP%20Publication%20118
    Retrieved on: Dec. 18, 2020
  5. G. C. Pereira, M. Traughber, R. F. Muzic, “The role of imaging in radiation therapy planning: past, present, and future,” Biomed. Res. Int., vol. 2014, spec. issue, 231090, Apr. 2014.
    DOI: 10.1155/2014/231090
    PMid: 24812609
    PMCid: PMC4000658
  6. W. Schneider, T. Bortfeld, W. Schlegel, “Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions,” Phys. Med. Biol., vol. 45, no. 2, pp. 459 – 478, Feb. 2000.
    DOI: 10.1088/0031-9155/45/2/314
    PMid: 10701515
  7. R. D. Ilić, “FOTELP - Simulacija transporta fotona, elektrona i pozitrona metodom Monte Karlo,” u Zborniku radova XXXII Jugoslovenske konferencije ETAN-a, Sarajevo, Jugoslavija, 1988, str. 45 – 52. (R. D. Ilic, “FOTELP - Monte Carlo simulation of photons, electrons and positrons transport,” in Proc. XXXII Yugoslav Conf. ETAN, Sarajevo, Yugoslavia, 1988, pp. 45 – 52.)
    Retrieved from: https://inis.iaea.org/search/search.aspx?orig_q=RN:38039579
    Retrieved on: Dec. 18, 2020
  8. C. J. Werner, MCNP User`s Manual, Report LA-UR-17-29981, Los Alamos National Security, Los Alamos (NM), USA, 2017.
    Retrieved from: https://mcnp.lanl.gov/pdf_files/la-ur-17-29981.pdf
    Retrieved on: Jan. 25, 2021
  9. R. D. Ilić, S. Stanković, M. Vukčević, Milan Petrović, “Numerički eksperimenti u zaštiti i dozimetriji,” u Zborniku radova XIX Jugoslovenskog simpozijuma za zaštitu od zračenja, Golubac, Jugoslavija, 1997, str. 115 – 119. (R. D. Ilic, S. Stankovic, M. Vukcevic, M. Petrovic, “Numerical experiments in protection and dosimetry,” in Proc. XIX Yugoslav Symp. Radiat. Protection, Golubac, Yugoslavia, 1997, pp. 115 – 119.)
    Retrieved from: http://dzz.org.rs/wp-content/uploads/2013/06/XIX-JDZZ-1997-Golubac.pdf
    Retrieved on: Jan. 25, 2021
  10. R. D. Ilic, FOTELP-2K3, Photon, Electron, and Positron Monte Carlo Transport Simulation, OECD NEA Data Bank, Paris, France, 2002.
  11. R. D. Ilić, V. Spasić-Jokić, P. Belicev, M. Dragović, “The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data,” Phys. Med. Biol., vol. 50, no. 5, pp. 1011 – 1017, Mar. 2005.
    DOI: 10.1088/0031-9155/50/5/023
    PMid: 15798273



Canan Koksal, Nazmiye Donmez Kesen, Nergiz Dagoglu Sakin

Pages: 101–104

DOI: 10.37392/RapProc.2021.21

Radiotherapy is the one of the major treatment modality for thoracic esophagus cancer patients. Delivering high radiation dose to the planning target volume (PTV) while protecting the surrounding normal tissues can be achieved by volumetric modulated arc therapy (VMAT) which is the advanced radiotherapy technique. For creating VMAT dose distributions, optimization algorithms and dose calculation algorithms in commercial treatment planning systems (TPS) are used. Especially in cases of tissue heterogeneity, the final calculated dose volume histogram (DVH) differs from optimal DVH acquired via the optimization procedure. The intermediate dose calculation (IDC) module, in the Eclipse treatment planning system, is utilized on optimization of the VMAT plan to solve these differences. The aim of the present study is to investigate the impact of IDC module during the optimization of VMAT for the thoracic esophagus cancer patients. The VMAT plans were generated on Eclipse TPS v15.1 using AAA algorithm without IDC module for ten patients with thoracic esophagus cancer patients. Then, the plans were re-optimized without changing optimization criteria by using same dose calculation algorithm with IDC module. The prescribed dose to PTV was 50.4 Gy/28 fr. The homogeneity index (HI) and the conformity index (CI) of PTV, maximum dose of spinal cord, mean dose of heart, the lung volume of receiving 5 and 20 Gy, were compared between plans created with and without IDC module. The CI of PTV for VMAT plans with and without IDC module were found to be 0.822±0.030 and 0.729±0.039, respectively (p=0.005). The HI of PTV for VMAT plans with and without IDC module were found to be 0.073±0.017 and 0.126±0.022, respectively (p=0.005). The maximum dose of spinal cord (p=0.028) and the mean dose of heart (p=0.047) were found lower in VMAT plans with IDC module. However, there was no significant difference for the volume of the lung receiving 5 (p=0.236) and 20 Gy (p=0.053). In conclusion, applying IDC module on VMAT optimization increases the plan quality in thoracic esophagus cancer patients.
  1. H. Kato, M. Nakajima, “Treatments for esophageal cancer: a review,” Gen. Thorac. Cardiovasc. Surg., vol. 61, no. 6, pp. 330 - 335, Jun. 2013.
    DOI: 10.1007/s11748-013-0246-0
    PMid: 23568356
  2. M. Watanabe et al., “Correction to: Recent progress in multidisciplinary treatment for patients with esophageal cancer,” Surg. Today., vol. 50, no. 4, p. 425, Apr. 2020.
    DOI: 10.1007/s00595-019-01952-0
    PMid: 31925580
    PMCid: PMC7098937
  3. M. Teoh, C. H. Clark, K. Wood, S. Whitaker, A. Nisbet, “Volumetric modulated arc therapy: a review of current literature and clinical use in practice,” Br. J. Radiol., vol. 84, no. 1007, pp. 967 - 996, Nov. 2011.
    DOI: 10.1259/bjr/22373346
    PMid: 22011829
    PMCid: PMC3473700
  4. H. Chen, D. L. Craft, D. P. Gierga, “Multicriteria optimization informed VMAT planning,” Med. Dosim., vol. 39, no. 1, pp. 64 - 73, Mar. 2014.
    DOI: 10.1016/j.meddos.2013.10.001
    PMid: 24360919
    PMCid: PMC3954571
  5. Y. Li et al., “Impact of dose calculation accuracy during optimization on lung IMRT plan quality,” J. Appl. Clin. Med. Phys., vol. 16, no. 1, pp. 219 - 228, Jan. 2015.
    DOI: 10.1120/jacmp.v16i1.5137
    PMid: 25679172
    PMCid: PMC5689966
  6. B. D. Park, T. G. Kim, J. E. Kim, “Dosimetric impact of intermediate dose calculation for optimization convergence error,” Oncotarget, vol. 7, no. 25, pp. 37589 - 37598, Jun. 2016.
    DOI: 10.18632/oncotarget.7743
    PMid: 26933998
    PMCid: PMC5122334
  7. A. van’t Riet, A. C. Mak, M. A. Moerland, L. H. Elders, W. van der Zee, “A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate,” Int. J. Radiat. Oncol. Biol. Phys., vol. 37, no. 3, pp. 731 - 736, Feb. 1997.
    DOI: 10.1016/s0360-3016(96)00601-3
    PMid: 9112473
  8. “Special considerations regarding absorbed-dose and dose-volume prescribing and reporting in IMRT,” J. ICRU, vol. 10, no. 1, pp. 27 - 40, Apr. 2010.
    DOI: 10.1093/jicru/ndq008
    PMid: 24173325
  9. D. Binny, T. Kairn, C. M. Lancaster, J. V. Trapp, S. B. Crowe, “Photon optimizer (PO) vs progressive resolution optimizer (PRO): a conformality- and complexity-based comparison for intensity-modulated arc therapy plans,” Med. Dosim., vol. 43, no. 3, pp. 267 - 275, Sep. 2018.
    DOI: 10.1016/j.meddos.2017.10.003
    PMid: 29079336
  10. U. Akbas et al., “Dosimetric impact of intermediate dose calculation on heterogeneous region radiotherapy planning”, Phys. Med., vol. 52, suppl. 1, p. 171, Aug. 2018.
    DOI: 10.1016/j.ejmp.2018.06.531

Microwave, Laser, RF and UV radiations

Experimental measurements of A 5G outdoor massive MIMO antenna located into a shopping center

Ts. Shalamanova, Hr. Petkova, M. Israel, V. Zaryabova

Pages: 105–108

DOI: 10.37392/RapProc.2021.22

The fifth generation mobile network (5G) is characterized not only by the expansion of the existing (4G) network, but represents an evolution of the current mobile technologies. Thanks to the use of millimeter waves and massive MIMO (Multi-Input Multiple-Output) technology, it will meet the ever increasing demands of users in terms of connectivity and capacity. The introduction of the new 5G technology is accompanied by problems related to the measurement and evaluation of electromagnetic fields (EMF). The first stage of implementation of 5G requires upgrading existing mobile 2G / 3G / 4G networks, which raises many concerns about the possibility EMF exposure limits to be exceeded. This is especially true for countries with more restrictive legislation than ICNIRP guidelines. The existing methodologies dedicated to EMF measurements of 2G, 3G and 4G networks are not suitable for 5G and can lead to significant overestimation of the exposure. The reason for that is mostly due to the specificity of the massive MIMO and the beamforming. This necessitated the use of a new approach in the assessment of the EMF exposure. This report considers experimental case of evaluating procedure of EMF exposure of the general public from an outdoor 5G massive MIMO antenna. The antenna was located into a shopping center for a demonstration the capabilities of the new 5G technology in front of the public. The power of the massive MIMO antenna was limited to 5 W because it was mounted indoor. For the purpose of the experiment 5G router was placed in different locations in order to steer the beam of the antenna. Test measurements were taken on the path of beam to evaluate the exposure in the premises. Changing the location and the height of the router, we managed to accomplish the safety limits of the EMF exposure (according to the Bulgarian legislation) for the visitors of the demonstration. We performed measurements during Ookla speed test to simulate the maximum traffic. As a result, the study can be used for the further assessment of similar cases and demonstrations for indoor premises.
  1. Министерство на здравеопазването/Министерство на околната среда. (Май 3, 1991). Държавен вестник брой 35. Наредба № 9 от 14 март 1991 г. за пределно допустими нива на електромагнитни полета в населени територии и определяне на хигиенно-защитни зони около излъчващи обекти .(Ministry of Health/Ministry of Environment and Water. (May 3, 1991). State gazette issue 35. Ordinance No. 9 of 14 March 1991. on the limit values of electromagnetic fields in populated areas and the identification of hygienic-protective zones around radiating objects .)
    Retrieved from: https://dv.parliament.bg/DVWeb/broeveList.faces#
    Retrieved on: Dec. 20, 2020
  2. The Council of European Union. (Jul. 12, 1999). 1999/519/EC. Council Recommendation on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz).
    Retrieved from: https://op.europa.eu/en/publication-detail/-/publication/9509b04f-1df0-4221-bfa2-c7af77975556/language-en
    Retrieved on: Mar. 17, 2021
  3. ICNIRP Guidelines for limiting exposure to to electromagnetic fields (100 kHz TO 300 GHz) , ICNIRP Publication – 2020, ICNIRP, Oberschleissheim, Germany, 2020.
    Retrieved from: https://www.icnirp.org/cms/upload/publications/ICNIRPrfgdl2020.pdf
    Retrieved on: Jan. 19, 2021
  4. Determination of RF field strength, power density and SAR in the vicinity of radiocommunication base stations for the purpose of evaluating human exposure , IEC 62232:2017, Aug. 23, 2017.
    Retrieved from: https://webstore.iec.ch/publication/28673
    Retrieved on: Jan. 19, 2021
  5. Case studies supporting IEC 62232 – Determination of RF field strength, power density and SAR in the vicinity of radiocommunication base stations for the purpose of evaluating human exposure , IEC TR 62669:2019, IEC, Geneva, Switzerland‎, 2019.
    Retrieved from: https://webstore.iec.ch/publication/62014#additionalinfo
    Retrieved on: Dec. 10, 2020

Patient and personnel health and safety in Magnetic Resonance Imaging Facility

M. Israel, M. Ivanova, P. Ivanova, Ts. Shalamanova, H. Petkova

Pages: 109–114

DOI: 10.37392/RapProc.2021.23

There are two aspects to be considered when using magnetic resonance imaging (MRI) equipment for diagnosis: patient and personnel protection. In regard to patient protection, the following main issues should be treated: individual characteristics, risk / benefit ratio; exposure time and exposure pattern, etc. The medical personnel protection is regulated by Directive 2013/35/EU and represents a major challenge in the EMF protection in the working environment. The Directive recognizes that for some activities/circumstances related to the installation, testing, use, development, maintenance and research related to magnetic resonance imaging (MRI) equipment may not comply with the exposure limit values. In these cases, the regulatory document introduces derogations that provide for risk management approaches for that specific source. This paper presents results of electromagnetic field measurement and evaluation in various MRI units in Bulgaria. The results show that the exposure limits for persons at specific risk are exceeded, as well as high values of the magnetic flux density of the static magnetic field up to 351 mT in the shielded room are registered. It should be noted here that for the personnel, a serious problem is the movement in inhomogeneous field conditions (in the shielded room), which in turn leads to induction of currents in the human body and, as a result, to transient symptoms such as vertigo and nausea occur. Measurement data are used to evaluate personnel exposure and to make specific recommendations for health and safety when dealing with such equipment in medical practice.
  1. ICNIRP Guidelines on limits of exposure to static magnetic fields, ICNIRP Publication – 2009, ICNIRP, Oberschleissheim, Germany, 2009.
    Retrieved from: https://www.icnirp.org/cms/upload/publications/ICNIRPstatgdl.pdf
    Retrieved on: Mar. 29, 2021
  2. ICNIRP Guidelines for limiting exposure to electric fields induced by movement of the human body in a static magnetic field and by time varying magnetic fields below 1 Hz, ICNIRP Publication – 2014, ICNIRP, Oberschleissheim, Germany, 2014.
    Retrieved from: https://www.icnirp.org/cms/upload/publications/ICNIRPmvtgdl_2014.pdf
    Retrieved on: Mar. 29, 2021
  3. ICNIRP statement on medical magnetic resonance (MR) procedures: protection of patients , ICNIRP Publication – 2004, ICNIRP, Oberschleissheim, Germany, 2004.
    Retrieved from: https://www.icnirp.org/cms/upload/publications/ICNIRPMR2004.pdf
    Retrieved on: Mar. 29, 2021
  4. Protection of Patients and Volunteers Undergoing MRI Procedures: Advice from the Health Protection Agency , Documents of the Health Protection Agency, Radiation, Chemical and Environmental Hazards RCE-7, HPA, London, UK, 2008.
    Retrieved from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/329364/ Protection_of_patients_and_volunteers_undergoing_MRI_procedures.pdf
    Retrieved on: Feb. 8, 2021
  5. H. Kromhout et al., “ICNIRP Statement on diagnostic devices using non-ionizing radiation: Existing regulations and potential health risks,” Health Phys., vol. 113, no. 2, pp. 149 – 150, Aug. 2017.
    DOI: 10.1097/HP.0000000000000686
    PMid: 28658061
  6. S. Bongers, P. Slottje, H. Kromhout, “Development of hypertension after long-term exposure to static magnetic fields among workers from a magnetic resonance imaging device manufacturing facility,” Environ. Res., vol. 164, pp. 565 – 573, Jul. 2018.
    DOI: 10.1016/j.envres.2018.03.008
    PMid: 29621724
  7. The European Parliament and the Council of the European Union. (Jun. 26, 2013). Directive 2013/35/EC of the European Parliament and of the Council on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) .
    Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:179:0001:0021:EN:PDF
    Retrieved on: Dec. 14, 2020
  8. The Council of European Union. (Jul. 12, 1999). Council Recommendation 1999/519/EC on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz).
    Retrieved from: https://op.europa.eu/en/publication-detail/-/publication/9509b04f-1df0-4221-bfa2-c7af77975556/language-en
    Retrieved on: Dec. 14, 2020
  9. Electromagnetic Fields, vol. 1, Non-binding guide to good practice for implementing Directive 2013/35/EU, European Commission, Brussels, Belgium, 2015.
    Retrieved from: http://bookshop.europa.eu/en/non-binding-guide-to-good-practice-for-implementing-directive-2013-35-eu-electromagnetic-fields-pbKE0415140/
    Retrieved on: Dec. 14, 2020
  10. Министерство на труда и социалната политика/Министерство на здравеопазването. (Ное. 26, 2016). Държавен вестник брой 95. Наредба № РД-07-5 от 15 ноември 2016 г. за минималните изисквания за осигуряване на здравето и безопасността на работещите при рискове, свързани с експозиция на електромагнитни полета. (Ministry of Labor and Social Policy/Ministry of Health. (Nov. 26, 2016). State gazette No. 95. Ordinance No RD-07-5 of 15 November 2016. for the minimal requirements for providing health and safety at work at risks by exposure to electromagnetic fields. )
    Retrieved from: http://dv.parliament.bg/DVWeb/broeveList.faces#
    Retrieved on: Dec. 14, 2020
  11. Medical electrical equipment - Part 2-33: Particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis, IEC 60601-2-33:2010, Mar. 10, 2010.
    Retrieved from: https://webstore.iec.ch/publication/2647
    Retrieved on: Jan. 11, 2021
  12. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices, ACGIH, Cincinnati (OH), USA, 2008.

Medical Imaging

High-quality iterative TOF MLEM reconstruction for short scans in total-body J-PET

R.Y. Shopa

Pages: 115–120

DOI: 10.37392/RapProc.2021.24

We introduce a list-mode time-of-flight maximum likelihood expectation maximisation (TOF MLEM) image reconstruction algorithm for the total-body Jagiellonian PET (J-PET) scanner, using an analytical model for the system response matrix (SRM), estimated as a log-polynomial fit of the Monte Carlo simulated emissions of back-to-back -photons for each bin. Using the GATE software, the updated method is tested on the simulated NEMA IEC phantom, scanned over a short 35-second time by the 140-cm long 24-module J-PET. By comparison to the reference TOF MLEM without the resolution modelling for the detectors from the CASToR framework, a significant improve-ment in image quality was observed. The inclusion of the penalisation into the reconstruction algorithm may achieve outcomes comparable to 500-second scans, with the best results obtained for the anisotropic median-diffusion with a finite-impulse-response median hybrid filter. The proposed TOF MLEM can also be extended to account for the non-collinearity, positron range and other factors.
  1. R. Ferrara, L. Mansi, “Paul Suetens (ed): Fundamentals of Medical Imaging (2nd edition),” Eur. J. Nucl. Med. Mol. Imaging, vol. 38, no. 2, 409, Feb. 2011.
    DOI: 10.1007/s00259-010-1694-8
  2. D. L. Bailey, D. W. Townsend, P. E. Valk, M. N. Maisey, Positron Emission Tomography: Basic Sciences, 1st ed., London, UK: Springer-Verlag, 2005.
    Retrieved from: http://library.lol/main/62ECAB329922072DF347CA01DC3AD401
    Retrieved on: Jul. 14, 2021
  3. S. Vandenberghe, P. Moskal, J. S. Karp, “State of the art in total body PET,” EJNMMI Phys., vol. 7, 35, May. 2020.
    DOI: 10.1186/s40658-020-00290-2
    PMid: 32451783
    PMCid: PMC7248164
  4. P. Moskal, E. Ł. Stępień, “Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators,” PET Clin., vol. 15, no. 4, pp. 439 - 452, Oct. 2020.
    DOI: 10.1016/j.cpet.2020.06.009
    PMid: 32739047
  5. R. D. Badawi et al., “First Human Imaging Studies with the EXPLORER Total-Body PET Scanner,” J. Nucl. Med., vol. 60, no. 3, pp. 299 - 303, Mar. 2019.
    DOI: 10.2967/jnumed.119.226498
    PMid: 30733314
    PMCid: PMC6424228
  6. S. R. Cherry et al., “Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care,” J. Nucl. Med., vol. 59, no. 1, pp. 3 - 12, Jan. 2018.
    DOI: 10.2967/jnumed.116.184028
    PMid: 28935835
    PMCid: PMC5750522
  7. P. Moskal et al., “Test of a single module of the J-PET scanner based on plastic scintillators,” Nucl. Instrum. Methods Phys. Res. A, vol. 764, pp. 317 - 321, Nov. 2014.
    DOI: 10.1016/j.nima.2014.07.052
  8. P. Moskal et al., “A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals,” Nucl. Instrum. Methods Phys. Res. A, vol. 775, pp. 54 - 62, Mar. 2015.
    DOI: 10.1016/j.nima.2014.12.005
  9. P. Moskal et al., “Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph,” Phys. Med. Biol., vol. 61, no. 5, pp. 2025 - 2047, Mar. 2016.
    DOI: 10.1088/0031-9155/61/5/2025
    PMid: 26895187
  10. S. Niedźwiecki et al., “J-PET: A New Technology for the Whole-body PET Imaging,” Acta Phys. Pol. B, vol. 48, no. 10, pp. 1567 - 1576, Oct. 2017.
    DOI: 10.5506/APhysPolB.48.1567
  11. N. G. Sharma et al., “Hit-Time and Hit-Position Reconstruction in Strips of Plastic Scintillators Using Multithreshold Readouts,” IEEE Trans. Radiat. Plasma Med. Sci., vol. 4, no. 5, pp. 528 - 537, Sep. 2020.
    DOI: 10.1109/TRPMS.2020.2990621
  12. S. Sharma et al., “Estimating relationship between the time over threshold and energy loss by photons in plastic scintillators used in the J-PET scanner,” EJNMMI Phys., vol. 7, 39, Jun. 2020.
    DOI: 10.1186/s40658-020-00306-x
    PMid: 32504254
    PMCid: PMC7275104
  13. P. Moskal et al., “Simulating NEMA characteristics of the modular total-body J-PET scanner-an economic total-body PET from plastic scintillators,” Phys. Med. Biol., vol. 66, no. 17, 175015, Sep. 2021.
    DOI: 10.1088/1361-6560/ac16bd
    PMid: 34289460
  14. L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging, vol. 1, no. 2, pp. 113 - 122, Oct. 1982.
    DOI: 10.1109/TMI.1982.4307558
    PMid: 18238264
  15. A. J. Reader, H. Zaidi, “Advances in PET Image Reconstruction,” PET Clin., vol. 2, no. 2, pp. 173 - 190, Apr. 2007.
    DOI: 10.1016/j.cpet.2007.08.001
    PMid: 27157872
  16. S. Jan et al., “GATE: a simulation toolkit for PET and SPECT,” Phys. Med. Biol., vol. 49, no. 19, pp. 4543 - 4561, Oct. 2004.
    DOI: 10.1088/0031-9155/49/19/007
    PMid: 15552416
    PMCid: PMC3267383
  17. Performance Measurements of Positron Emission Tomographs (PETs) , NEMA NU 2-2012, 2013.
    Retrieved from: https://webstore.ansi.org/standards/nema/nemanu2012-1451586#PDF
    Retrieved on: Jul. 14, 2021
  18. T. Merlin et al., “CASToR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction,” Phys. Med. Biol., vol. 63, no. 18, 185005, Sep. 2018.
    DOI: 10.1088/1361-6560/aadac1
    PMid: 30113313
  19. H. H. Barrett, T. White, L. C. Parra, “List-mode likelihood,” J. Opt. Soc. Am. A, vol. 14, no. 11, pp. 2914 - 2923, Nov. 1997.
    DOI: 10.1364/josaa.14.002914
    PMid: 9379247
    PMCid: PMC2969184
  20. A. Strzelecki, “Image reconstruction and simulation of strip Positron Emission Tomography scanner using computational accelerators,” Ph.D. dissertation, Polish Academy of Sciences, Institute of Fundamental Technological Research, Kraków, Poland, 2016.
    Retrieved from: https://oldwww.ippt.pan.pl/_download/doktoraty/2016strzelecki_a_doktorat.pdf
    Retrieved on: Jul. 14, 2021
  21. V. Westerwoudt, M. Conti, L. Eriksson, “Advantages of Improved Time Resolution for TOF PET at Very Low Statistics,” IEEE Trans. Nucl. Sci., vol. 61, no. 1, pp. 126 - 133, Feb. 2014.
    DOI: 10.1109/TNS.2013.2287175
  22. P. J. Green, “Bayesian reconstructions from emission tomography data using a modified EM algorithm,” IEEE Trans. Med. Imaging, vol. 9, no. 1, pp. 84 - 93, Mar. 1990.
    DOI: 10.1109/42.52985
  23. S. Alenius, U. Ruotsalainen, “Bayesian image reconstruction for emission tomography based on median root prior,” Eur. J. Nucl. Med., vol. 24, no. 3, pp. 258 - 265, Mar. 1997.
    DOI: 10.1007/BF01728761
    PMid: 9143462
  24. J. Nuyts, D. Beque, P. Dupont, L. Mortelmans, “A concave prior penalizing relative differences for maximum-a-posteriori reconstruction in emission tomography,” IEEE Trans. Nucl. Sci., vol. 49, no. 1, pp. 56 - 60, Feb. 2002.
    DOI: 10.1109/TNS.2002.998681
  25. H. Ling, A. C. Bovik, “Smoothing low-SNR molecular images via anisotropic median-diffusion,” IEEE Trans. Med. Imaging, vol. 21, no. 4, pp. 377 - 384, Apr. 2002.
    DOI: 10.1109/TMI.2002.1000261
    PMid: 12022625
  26. S. Alenius, U. Ruotsalainen, “Generalization of median root prior reconstruction,” IEEE Trans. Med. Imaging, vol. 21, no. 11, pp. 1413 - 1420, Nov. 2002.
    DOI: 10.1109/TMI.2002.806415
    PMid: 12575878
  27. J. Smyrski et al., “Measurement of gamma quantum interaction point in plastic scintillator with WLS strips,” Nucl. Instrum. Methods Phys. Res. A, vol. 851, pp. 39 - 42, Apr. 2017.
    DOI: 10.1016/j.nima.2017.01.045
  28. P. Kowalski et al., “Estimating the NEMA characteristics of the J-PET tomograph using the GATE package,” Phys. Med. Biol., vol. 63, no. 16, 165008, Aug. 2018.
    DOI: 10.1088/1361-6560/aad29b
    PMid: 29992906
  29. S. Li, M. Wang, H. Hou, J. Yang, X. Wang, “Fast algorithm for calculating the radiological path in fan-beam CT image reconstruction,” Optik, vol. 127, no. 5, pp. 2973 - 2977, Mar. 2016.
    DOI: 10.1016/j.ijleo.2015.12.034



E. Kuzmina, A. Degtyareva, T. Mushkarina, S. Zatsarenko

Pages: 121–127

DOI: 10.37392/RapProc.2021.25

We examined 240 patients (with late radiation-induced injuries to the skin, underlying soft tissues and internal organs) who had undergone radiotherapy or combination therapy for breast cancer, cervical cancer, uterine body cancer and Hodgkin’s lymphoma at different times. Therapy for radiation-induced injuries developed and being performed at MRRC with the use of pharmacological agents (analgetics, neuroleptics and narcotics), so-called basis therapy, in combination with reflexotherapy may considerably reduce psycho-emotional and pain symptoms of late radiation-induced injuries. The analgesic effect is achieved after the first 3-5 sessions of therapy including reflexo-laser treatment. As a result, the use of analgesics and narcotics can be reduced. This therapy improves the quality of life for patients: they can attend to themselves and add more physical activity to their life. The effects of basis therapy alone (50 patients) and in combination with reflex treatment (46 patients) on immunity were compared. Immunity data of 70 practically healthy people made up the control group. It restores adaptation mechanisms while reducing immune hyperactivation and immunodepression. By adding reflexo-laser treatment, basis therapy appeared more successful restoring immunological disorders.
  1. M. S. Bardychev, S. N. Katsalap, “Local radiation damage: the characteristics of its pathogenesis, diagnosis and treatment”, Vopr. Onkol., vol. 41, no. 2, p. 99, 1995.
    PMid: 7483460
  2. Е. А. Ростачева, “Влияние рефлексотерапии на противовирусный иммунитет”, Детская медицина северо-запада, т. 8, но. 1, с. 289 - 290, 2020. (E. A. Rostacheva, “The influence of reflexology on antiviral immunity”, Child. Med. North-West, vol. 8, no. 1, pp. 289 - 290, 2020.)
    Retrieved from: https://elibrary.ru/item.asp?id=46338577
    Retrieved on: May 10, 2021
  3. G. O. Andreeva, K. M. Naumov, “Modern concepts of acupuncture mechanisms”, Russian Military Med. Acad. Rep., vol. 39, no. s3 - 5, pp. 11 - 13, 2020.
  4. А. М. Василенко, С. А. Радзиевский, Л. Г. Агасаров, С. А. Бугаев, “Рефлексотерапия в формате восстановительной медицины”, Вопросы курортологии, физиотерапии и лечебной физической культуры, т. 90, но. 1, с. 32 - 38, 2013. (A. M. Vasilenko, S. A. Radzievsky, L. G. Agasarov, S. A. Bugaev, “Reflexotherapy in the context of rehabilitative medicine”,Questions of balneology, physiotherapy and therapeutic physical culture, vol. 90, no. 1, pp. 32 – 38, 2013.)
    Retrieved from: https://www.mediasphera.ru/issues/voprosy-kurortologii-fizioterapii-i-lechebnoj-fizicheskoj-kultury/2013/1/030042-8787201316
    Retrieved on: May 10, 2021
  5. Е. Г. Кузьмина и другие, “Интегративная (рефлексолазерная) терапия в восстановлении онкологических больных после комбинированной терапии (клинико-иммунологические аспекты)”, в кн. тез. 3-й Международный форум “Интегративная медицина 2008,” Москва, Россия, 2008, с. 147 – 151. (E. G. Kuzmina et al., “Integrative (reflexo-laser) therapy in restoration of oncologic patients after combination therapy (clinical-and-immunologic aspects)”, in Book of Abstr. 3rd Int. Forum “Integrative medicine 2008, Moscow, Russia, 2008, pp. 147 – 151.)
  6. Е. А. Гурьянова, “Место рефлексотерапии в системе медицинской реабилитации”, в кн. тез.Межрегиональной научно-практической конференции Вопросы Медицинской Реабилитации, Чебоксары, Россия, 2018, с. 26 – 32. (E. A. Guryanova, “The place of reflexology in the system medical rehabilitation”, in Book of Abstr. Conf. Issues of medical rehabilitation, Chuvashiya, Russia, 2018, pp. 26 – 32.)
  7. A. Uncini et al., “Effect of closely repeated cathodal transcranial direct current stimulations”, Clin. Neurophysiol., vol. 128, no. 3, p. e150, Mar. 2017.
    DOI: 10.1016/j.clinph.2016.10.395
  8. M. C. Ridding, U. Ziemann, “Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects”, J. Physiol., vol. 588, no. 13, pp. 2291 – 2304, Jul. 2010.
    DOI: 10.1113/jphysiol.2010.190314
    PMid: 20478978
    PMCid: PMC2915507
  9. M. Vitor-Costa et al., “Improving cycling performance: transcranial direct current stimulation increases time to exhaustion in cycling”, PLoS ONE, vol. 10, no. 12, e0144916, Dec. 2015.
    DOI: 10.1371/journal.pone.0144916
    PMid: 26674200
    PMCid: PMC4687680
  10. J. Nelson et al., “The effects of transcranial direct current stimulation (tDCS) on multitasking throughput capacity”, Front. Hum. Neurosci., vol. 10, 589, Nov. 2016.
    DOI: 10.3389/fnhum.2016.00589
    PMid: 27965553
    PMCid: PMC5126079
  11. E. Santarnecchi et al., “Enhancing cognition using transcranial electrical stimulation”, Curr. Opin. Behav. Sci., vol. 4, pp. 171 - 178, Aug. 2015.
    DOI: 10.1016/j.cobeha.2015.06.003
  12. S. Reardon, “’Brain doping’ may improve athletes’ performance”, Nature, vol. 531, no. 7594, pp. 283 - 284, Mar. 2016.
    DOI: 10.1038/nature.2016.19534
    PMid: 26983516
  13. R. A. McKinley, L. McIntire, J. Nelson, J. Nelson, C. Goodyear, “The effects of Transcranial Direct Current Stimulation (tDCS) on training during a complex procedural task”, in Advances in Neuroergonomics and Cognitive Engineering, vol. 488, K. S. Hale, K. M. Stanney, Eds., 1st ed., Cham, Switzerland: Springer, 2017, pp. 173 – 183.
    Retrieved from: http://library.lol/main/48FCD7C078F18C6FED6799073A8E25C0
    Retrieved on: Jan. 12, 2021
  14. C. Lustenberger, M. R. Boyle, A. A. Foulser, J. M. Mellin, F. Fröhlich, “Functional role of frontal alpha oscillations in creativity”, Cortex, vol. 67, pp. 74 - 82, Jun. 2015.
    DOI: 10.1016/j.cortex.2015.03.012
    PMid: 25913062
    PMCid: PMC4451406
  15. A. Vossen, J. Gross, G. Thut, “Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment”, Brain Stimul., vol. 8, no. 3, pp. 499 - 508, May-Jun. 2015.
    DOI: 10.1016/j.brs.2014.12.004
    PMid: 25648377
    PMCid: PMC4464304
  16. J. Yu, T. Yu, J. Han, “Aging-related changes in the transcriptional profile of cerebrum in senescence-accelerated mouse (SAMP10) is remarkably retarded by acupuncture”, Acupunct. Electrother. Res., vol. 30, no. 1 - 2, pp. 27 - 42, 2005.
    DOI: 10.3727/036012905815901370
    PMid: 16231630
  17. P. Karoly, M. P. Jensen, Multimethod assessment of chronic pain, Oxford, UK: Pergamon, 1987, p. 172.
  18. Д. Д. Бернс, При панических атаках: новая безлекарственная тревожная терапия, которая может изменить вашу жизнь, Москва, Россия: Издательство Альпина, 2021, с. 550. (D. D. Burns, When panic attacks: the new, drug-free anxiety therapy that can change your life, Moscow, Russia: Alpina Publisher, 2021, p. 550.)
  19. N. H. Embong, Y. C. Soh, L. C. Ming, T. W. Wong, “Revisiting reflexology:Concept, evidence, current practice, and practitioner training,” J. Tradit. Complement. Med., vol. 5, no. 4, pp. 197 – 206, Oct. 2015.
    DOI: 10.1016/j.jtcme.2015.08.008
    PMid: 26587391
    PMCid: PMC4624523
  20. S. A. Glantz, Primer of Biostatistics, 7th ed., New York (NY), USA: McGraw-Hill, 2012.
    Retrieved from: https://accessanesthesiology.mhmedical.com/book.aspx?bookid=665&isMissingChapter=true
    Retrieved on: Aug. 15, 2021
  21. F. Quinn, C. M. Hughes, G. D. Baxter, “Reflexology in the management of low back pain: a pilot randomised controlled trial,” Complement. Ther. Med., vol. 16, no. 1, pp. 3 – 8, Feb. 2008.
    DOI: 10.1016/j.ctim.2007.05.001
    PMid: 18346622
  22. C. K. Chen, A. J. Nizar, “Myofascial pain syndrome in chronic back pain patients,” Korean J. Pain, vol. 24, no. 2, pp. 100 – 104, Jun. 2011.
    DOI: 10.3344/kjp.2011.24.2.100
    PMid: 21716607
    PMCid: PMC3111556
  23. P. Hall, “Reflexology for Stroke,” Positive health, Oct. 2002.
    Retrieved from: http://www.positivehealth.com/article/reflexology/reflexology-for-stroke
    Retrieved on: Aug. 15, 2021
  24. H. J. Baltrusch, W. Stangel, I. Titze, “Stress, cancer and immunity. New developments in biopsychosocial and psychoneuroimmunologic research,” Acta Neurol., vol. 13, no. 4, pp. 315 - 327, Aug. 1991.
    PMid: 1781308
  25. N. M. Burduli, L. G. Ranyuk, “The influence of laser radiation on the functional activity of leucocytes, lipid peroxidation and antioxidant defensein patients with chronic acalculous cholecystitys”, Kuban Scientific Medical Bulletin, vol. 140, no. 5, p. 56, Krasnodar, Russia, 2013.



Suzan Ozdemir, Janset Oztemur, Hande Sezgin, Ipek Yalcin Enis

Pages: 128–132

DOI: 10.37392/RapProc.2021.26

The selection of the raw materials is one of the most important factors for tissue scaffolds to function as native tissue. In this regard, the usage of biopolymers is crucial because these polymers are biocompatible, biodegradable, and non-toxic. Poly (l-lactic acid) (PLLA) has high biocompatibility that promotes cell attachment and proliferation, also it has suitable biodegradation time to allow cells to generate their own extracellular matrix (ECM) without creating any toxicity. On the other hand, polycaprolactone (PCL) has some mechanical advantages that can contribute to the function of the designed scaffolds when using as a blend. In this study, PLLA-based fibrous structures are produced by electrospinning method. Different concentrations of PLLA (10%, 14%, and 18%) are dissolved in chloroform solvent while PCL/PLLA blends (8% wt.) with different ratios (5/5, 6/4, 7/3, 8/2, and 9/1) are dissolved in 8/1/1 chloroform/ethanol/acetic acid solvent systems. The physical and morphological analyses are accomplished to determine the effect of concentration and blend ratio on the web structure.
  1. I. Yalcin-Enis,, J. Oztemur, “The potential use of fibrous webs electrospun from polylactic acid / poly ɛ-caprolactone blends in tissue engineering applications,” in Engineering and Architecture Sciences: Theory, Current Researches and New Trends , C. Çi̇vi̇, T. Yilmaz, Eds., 1st ed., Cetinje, Montenegro: IVPE, 2020, ch. XV, pp. 213 – 234.
    Retrieved from: http://www.uakb.org/source/2020%20Ekim%20Kitaplari/ENGINEERING%20AND%20ARCHITECTURE%20SCIENCES%20Theory ,%20Current%20Researches%20and%20New%20Trends-min.pdf
    Retrieved on: Nov. 10, 2020
  2. I. Y. Enis, T. G. Sadikoglu, “Design parameters for electrospun biodegradable vascular grafts,” J. Ind. Text., vol. 47, no. 8, pp. 2205 – 2227, May 2018.
    DOI: 10.1177/1528083716654470
  3. J. Oztemur, I. Yalcin-Enis, “Morphological analysis of fibrous webs electrospun from Polycaprolactone, polylactic acid and their blends in chloroform based solvent systems,” Mater. Today: Proc., vol. 46, pp. 2161 – 2166, 2021.
    DOI: 10.1016/j.matpr.2021.02.638
  4. T. Biswal, “Biopolymers for tissue engineering applications: A review,” Mater. Today Proc., vol. 41, pp. 397 – 402, 2021.
    DOI: 10.1016/j.matpr.2020.09.628
  5. S. A. Ganie, A. Ali, T. A. Mir, Q. Li, “Physical and chemical modification of biopolymers and biocomposites,” in Advanced Green Materials, S. Ahmed, Ed., 1st ed., Sawston, UK: Woodhead Publishing, 2020, ch. 16, pp. 359 – 377.
    DOI: 10.1016/B978-0-12-819988-6.00016-1
  6. J. Oztemur, I. Yalcin Enis, “The Role of Biopolymer Selection in the Design of Electrospun Small Caliber Vascular Grafts to Replace the Native Arterial Structure,” in Theory and Research in Engineering, A. Hayaloğlu, Ed., 1st ed., Ankara, Turkey: Gece Publishing, 2020, ch. 9, pp. 167 – 192.
    Retrieved from: https://www.gecekitapligi.com/Webkontrol/uploads/Fck/engineering_7.pdf
    Retrieved on: Feb. 18, 2021
  7. M. S. B. Reddy, D. Ponnamma, R. Choudhary, K. K. Sadasivuni, “A comparative review of natural and synthetic biopolymer composite scaffolds,” Polymers, vol. 13, no. 7, 1105, Apr. 2021.
    DOI: 10.3390/polym13071105
    PMid: 33808492
    PMCid: PMC8037451
  8. E. Bolbasov et al., “Comparative Study of the Physical, Topographical and Biological Properties of Electrospinning PCL, PLLA, their Blend and Copolymer Scaffolds,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 350, 012012, 2018.
    DOI: 10.1088/1757-899X/350/1/012012
  9. N. Poomathi et al., “3D printing in tissue engineering: a state of the art review of technologies and biomaterials,” Rapid Prototyp. J., vol. 26, no. 7, pp. 1313 – 1334, Jul. 2020.
    DOI: 10.1108/RPJ-08-2018-0217
  10. Z. Xie, M. Gao, A. O. Lobo, T. J. Webster, “3D bioprinting in tissue engineering for medical applications: The classic and the hybrid,” Polymers, vol. 12, no. 8, 1717, Aug. 2020.
    DOI: 10.3390/POLYM12081717
    PMid: 32751797
    PMCid: PMC7464247
  11. J. L. Walker, M. Santoro, “Processing and production of bioresorbable polymer scaffolds for tissue engineering,” in Bioresorbable Polymers for Biomedical Applications: From Fundamentals to Translational Medicine , G. Perale, J. Hilborn, Eds., 1st ed., Sawston, UK: Woodhead Publishing, 2016, pp. 181 – 203.
    DOI: 10.1016/B978-0-08-100262-9.00009-4
  12. P. Muniyandi et al. “ECM mimetic electrospun porous poly (l-lactic acid) (PLLA) scaffolds as potential substrates for cardiac tissue engineering,” Polymers, vol. 12, no. 2, 451, Feb. 2020.
    DOI: 10.3390/polym12020451
    PMid: 32075089
    PMCid: PMC7077699
  13. I. A. Fiqrianti et al., “Poly-L-Lactic acid (PLLA)-chitosan-collagen electrospun tube for vascular graft application,” J. Funct. Biomater., vol. 9, no. 2, 32, Apr. 2018.
    DOI: 10.3390/jfb9020032
    PMid: 29710843
    PMCid: PMC6023529
  14. A. Hasan et al., “Fabrication and in Vitro Characterization of a Tissue Engineered PCL-PLLA Heart Valve,” Sci. Rep., vol. 8, no. 1, 8187, May 2018.
    DOI: 10.1038/s41598-018-26452-y
    PMid: 29844329
    PMCid: PMC5974353
  15. I. Y. Enis, J. Vojtech, T. G. Sadikoglu, “Alternative solvent systems for polycaprolactone nanowebs via electrospinning,” J. Ind. Text., vol. 47, no. 1, pp. 57 – 70, Jul. 2017.
    DOI: 10.1177/1528083716634032
  16. J. Lasprilla-Botero, M. Álvarez-Láinez, J. M. Lagaron, “The influence of electrospinning parameters and solvent selection on the morphology and diameter of polyimide nanofibers,” Mater. Today Commun., vol. 14, pp. 1 – 9, Mar. 2018.
    DOI: 10.1016/j.mtcomm.2017.12.003
  17. F. A. A. Ruiter, C. Alexander, F. R. A. J. Rose, J. I. Segal, “A design of experiments approach to identify the influencing parameters that determine poly-D,L-lactic acid (PDLLA) electrospun scaffold morphologies,” Biomed. Mater., vol. 12, no. 5, 055009, Oct. 2017.
    DOI: 10.1088/1748-605X/aa7b54
  18. B. Tarus, N. Fadel, A. Al-Oufy, M. El-Messiry, “Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats,” Alex. Eng. J., vol. 55, no. 3, pp. 2975 – 2984, Sep. 2016.
    DOI: 10.1016/j.aej.2016.04.025
  19. G. Eda, S. Shivkumar, “Bead structure variations during electrospinning of polystyrene,” J. Mater. Sci., vol. 41, no. 17, pp. 5704 – 5708, Sep. 2006.
    DOI: 10.1007/s10853-006-0069-9
  20. T. E. Boncu, N. Ozdemir, “Electrospinning of ampicillin trihydrate loaded electrospun PLA nanofibers I: effect of polymer concentration and PCL addition on its morphology, drug delivery and mechanical properties,” Int. J. Polym. Mater., 2021.
    DOI: 10.1080/00914037.2021.1876057
  21. H. Maleki, A. A. Gharehaghaji, G. Criscenti, L. Moroni, P. J. Dijkstra, “The influence of process parameters on the properties of electrospun PLLA yarns studied by the response surface methodology,” J. Appl. Polym. Sci., vol. 132, no. 5, Feb. 2015.
    DOI: 10.1002/app.41388