Vol. 4, 2019

Original research papers

Radiation Measurements

ASSESSMENT OF INDUSTRIAL DIAMONDS USING FOR Co, Cr, Fe, Mn, Ni, AND Si USING THERMAL AND EPITHERMAL NEUTRON ACTIVATION ANALYSIS WITH COMPTON SUPPRESSION

C. Brenan, S. Landsberger

Pages: 53–56

DOI: 10.37392/RapProc.2019.11

An assessment of the trace elemental content in industrial diamonds was performed using thermal and epithermal neutron activation analysis (NAA). For NAA, the elements determined were Mn and Si (short-lived radionuclides) Co, Cr, Fe, Ni (long-lived radionuclides) using normal and Compton suppression counting modes. Quality control was achieved using a NIST standard reference material.
  1. Y. Weiss, W. L. Griffin, S. Elhlou, O. Navon, “Comparison between LA-ICP-MS and EPMA analysis of trace elements in diamonds,” Chem. Geol., vol. 252, no. 3 – 4, pp. 158 – 168, Jul. 2008.
    DOI: 10.1016/j.chemgeo.2008.02.008
  2. J. McNeill et al., “Quantitative analysis of trace element concentrations in some gem-quality diamonds,” J. Phys. Condens. Matter, vol. 21, no. 36, Sep. 2009.
    DOI: 10.1088/0953-8984/21/36/364207
    PMid: 21832313
  3. D. M. Bibby, “Zonal distribution of impurities in diamond,” Geochim. Cosmochim. Acta, vol. 43, no. 3, pp 415 – 423, Mar. 1979.
    DOI: 10.1016/0016-7037(79)90206-0
  4. D. M. Bibby, “Impurities in natural diamond,” Chem. Phys. Carbon, vol. 18, pp. 1 – 91, 1982.
    Retrieved from: https://ci.nii.ac.jp/naid/80001518268/
    Retrieved on: Sep. 3, 2019
  5. H. W. Fesq, D. M. Bibby, J. P. F. Sellschop, J. I. W. Watterson, “The determination of trace-element impurities in natural diamonds by instrumental neutron activation analysis,” J. Radioanal. Chem., vol. 17, no. 1 – 2, pp. 195 – 216, Mar. 1973.
    DOI: 10.1007/BF02520785
  6. A. Damarupurshad, R. J. Hart, J. P. F. Sellschop, H. O. Meyer, “The application of INAA to the geochemical analysis of single diamonds,” J. Radioanal. Nucl. Chem., vol. 219, no. 1, pp. 33 – 39, May 1997.
    DOI: 10.1007/BF02040261
  7. J. J. Fardy, Y. J. Farrar, “Trace-element analysis of argyle diamonds using instrumental neutron activation analysis,” J. Radioanal. Nucl. Chem., vol. 164, no. 5, pp. 337 – 345, Mar. 1992.
    DOI: 10.1007/BF02164957
  8. E. M. Smith et al., “Blue boron-bearing diamonds from Earth’s lower mantle,” Nature, vol. 560, pp. 84 – 87, Aug. 2018.
    DOI: 10.1038/s41586-018-0334-5
  9. E. Gaillou, J. E. Post, D. Rost, J. E. Butler, “Boron in natural type IIb blue diamonds: Chemical and spectroscopic measurements,” Am. Mineral., vol 97, no. 1, pp. 1 – 18, Jan. 2012.
    DOI: 10.2138/am.2012.3925
  10. J. M. King, et al., “Characterizing natural-color type IIb blue diamonds,” Gems Gemol., vol. 34, no. 4, pp. 246 – 268, Dec. 1998.
    DOI: 10.5741/GEMS.34.4.246
  11. S. Landsberger, J. Yellin, “Minimizing sample sizes while achieving accurate elemental concentrations in neutron activation analysis of precious pottery,” J. Archaeol. Sci.,vol. 20, pp. 622 – 625, Aug. 2018.
    DOI: 10.1016/j.jasrep.2018.05.029
  12. M. B. Stokley, S. Landsberger, “A non-destructive analytical technique for low level detection of praseodymium using epithermal neutron activation analysis and compton suppression gamma-ray spectroscopy,” J. Radioanal. Nucl. Chem., vol. 318, no. 1, pp. 369 – 373, Oct. 2018.
    DOI: 10.1007/s10967-018-6071-2
  13. S. Landsberger, J. Yellin, “Minimizing sample sizes while achieving accurate elemental concentrations in neutron activation analysis of precious pottery,” J. Archaeol. Sci.,vol. 20, pp. 622 – 625, Aug. 2018.
    DOI: 10.1016/j.jasrep.2018.05.029
  14. I. K. Baidoo et al., “Determination of aluminium, silicon and magnesium in geological matrices by delayed neutron activation analysis based on k0 instrumental neutron activation analysis,” Appl. Rad. Isot., vol. 82, pp. 152 – 157, Dec. 2013.
    DOI: 10.1016/j.apradiso.2013.07.032
    PMid: 23999324
  15. J. Kučera, R. Zeisler, “Low-level determination of silicon in biological materials using radiochemical neutron activation analysis,” J. Radioanal. Nucl. Chem., vol. 263, no. 3, pp 811 – 816, Feb. 2005.
    DOI: 10.1007/s10967-005-0663-3
  16. S. Yusuf, “Improving the detection limit of silicon, magnesium and aluminum in neutron activation analysis of polymers using a TRIGA® reactor,” J Radioanal. Nucl. Chem., vol. 282, pp. 99 – 104, Oct. 2009.
    DOI: 10.1007/s10967-009-0212-6
  17. S. Landsberger, S. Peshev, D. A. Becker, “Determination of silicon in biological and botanical reference materials by epithermal INAA and Compton suppression,” Nucl. Instrum. Methods Phys. Res., vol. 353, no. 1 – 3, pp. 601 – 605, Dec. 1994.
    DOI: 10.1016/0168-9002(94)91732-9
  18. S. Landsberger, D. Wu, “Improvement of analytical sensitivities for the determination of antimony, arsenic, cadmium, indium, iodine, molybdenum, silicon and uranium in airborne particulate matter by epithermal neutron activation analysis,” J. Radioanal. Nucl. Chem., vol. 167, no. 2, pp. 219 – 225, Jan. 1993.
    DOI: 10.1007/BF02037181
  19. B. Canion, S. Landsberger, “Determining trace amounts of nickel in plant samples by neutron activation analysis,” J. Radioanal. Nucl. Chem., vol. 296, no. 1, pp. 315 – 317, Apr. 2013.
    DOI: 10.1007/s10967-012-2070-x
  20. S. Landsberger, W. D. Cizek, R. H. Campbell, “NADA92: An automated, user-friendly program for neutron activation data analysis, J. Radioanal. Nucl. Chem., vol. 180, no. 1, pp. 55 – 63, May 1994.
    DOI: 10.1007/BF02039903
  21. Gamma-ray Spectrometry Catalog, Idaho National Laboratory, Idaho (ID), USA.
    Retrieved from: https://gammaray.inl.gov/SitePages/Home.aspx
    Retrieved on: Sep. 29, 2019
  22. L. A. Currie, “Limits for qualitative detection and quantitative determination. Application to radiochemistry,” Anal. Chem., vol. 40, no. 3, pp. 586 – 593, Mar. 1968.
    DOI: 10.1021/ac60259a007