Vol. 8, 2023

Novelties in Covid-19 research


Maria Zoran, Roxana Savastru, Dan Savastru, Marina Tautan

Pages: 8-14

DOI: 10.37392/RapProc.2023.03

This paper investigated the influences of urban aerosols and radon (222Rn) together climate parameters variability at both local and regional scales in relationship with COVID-19 pandemic incidence and mortality in Bucharest metropolitan area of Romania, considered one of the European’s most polluted hotspots cities. A spatio-temporal analysis of the daily particulate matter in two size fractions PM10 and PM2.5 in relation with daily radon concentrations and meteorological parameters was done through synergy of in-situ monitoring data and MODIS Terra/Aqua time-series satellite data for March 2020-April 2022 time period. This study investigated the COVID-19 waves patterns under different air quality and meteorological conditions, highlighting the role of synoptic anticyclonic stagnant conditions during each COVID-19 wave for SARS-CoV-2 virus spreading. These results contribute to a better understanding of urban decision makers and epidemiologists through considering the specific characteristics of different urban sectors for air quality improvement.
  1. Europe’s Air Quality Status 2022, Rep. 04/2022, Eur. Environ. Agency, Copenhagen, Denmark, 2022.
    DOI: 10.2800/049755
  2. D. Kikaj et al., “Investigating the vertical and spatial extent of radon-based classification of the atmospheric mixing state and impacts on seasonal urban air quality,” Sci. Total Environ., vol. 872, no. 2, 162126, May 2023.
    DOI: 10.1016/j.scitotenv.2023.162126
    PMid: 36773908
  3. M. Hosoda et al., “A unique high natural background radiation area - Dose assessment and perspectives,” Sci. Total Environ., vol. 750, no. 5, 142346, Jan. 2021.
    DOI: 10.1016/j.scitotenv.2020.142346
    PMid: 33182182
  4. L. Borro et al., “The role of air conditioning in the diffusion of Sars-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children’s hospital,” Environ. Res., vol. 193, 110343, Feb. 2021.
    DOI: 10.1016/j.envres.2020.110343
    PMid: 33068577
    PMCid: PMC7557177
  5. E. Burgio, P. Piscitelli, L. Migliore, “Ionizing radiation and human health: reviewing models of exposure and mechanisms of cellular damage. An epigenetic perspective,” Int. J. Environ. Res. Public Health, vol. 15, no. 9, 1971, Sep. 2018.
    DOI: 10.3390/ijerph15091971
    PMid: 30201914
    PMCid: PMC6163535
  6. I. Yarmoshenko, M. Zhukovsky, A. Onishchenko, A. Vasilyev, G. Malinovsky, “Factors influencing temporal variations of radon concentration in high-rise buildings,” J. Environ. Radioact., vol. 232, 106575, Jun. 2021.
    DOI: 10.1016/j.jenvrad.2021.106575
    PMid: 33711618
  7. F. Loffredo et al., “Indoor Radon Concentration and Risk Assessment in 27 Districts of a Public Healthcare Company in Naples, South Italy,” Life , vol. 11, no. 3, 178, Feb. 2021.
    DOI: 10.3390/life11030178
    PMid: 33668261
    PMCid: PMC7996231
  8. P. P. S. Otahal et al., “Low-Level Radon Activity Concentration-A MetroRADON International Intercomparison,” Int. J. Environ. Res. Public Health , vol. 19, no. 10, 5810, May 2022.
    DOI: 10.3390/ijerph19105810
    PMid: 35627347
    PMCid: PMC9141648
  9. V. Weilnhammer et al., “Extreme weather events in Europe and their health consequences - A systematic review,” Int. J. Hyg. Environ. Health , vol. 233, no. 9, 113688, Apr. 2021.
    DOI: 10.1016/j.ijheh.2021.113688
    PMid: 33530011
  10. N. S. M. Nor et al., “Particulate matter (PM2.5) as a potential SARS-CoV-2 carrier,” Sci. Rep., vol. 11, no. 1, 2508, Jan. 2021.
    DOI: 10.1038/s41598-021-81935-9
    PMid: 33510270
    PMCid: PMC7844283
  11. T. Borisova, S. Komisarenko, “Air pollution particulate matter as a potential carrier of SARS-CoV-2 to the nervous system and/or neurological symptom enhancer: arguments in favor,” Environ. Sci. Pollut. Res. Int ., vol. 28, no. 30, pp. 40371 – 40377, Aug. 2021.
    DOI: 10.1007/s11356-020-11183-3
    PMid: 33051841
    PMCid: PMC7552951
  12. M. Mullerova, K. Holy, P. Blahusiak, M. Bulko, “Study of radon exhalation from the soil,” J. Radioanal. Nucl. Chem., vol. 315, no. 2, pp. 237 – 241, Feb. 2018.
    DOI: 10.1007/s10967-017-5657-4
  13. M. Zoran, D. Savastru, A. Dida, “Assessing urban air quality and its relation with radon (222Rn),” J. Radioanal. Nucl. Chem., vol. 309, pp. 909 – 922, Aug. 2016.
    DOI: 10.1007/s10967-015-4681-5
  14. J. Maya et al., “Radon Risks Assessment with the Covid-19 Lockdown Effects,” J. Appl. Math. Phys., vol. 8, no. 7, pp. 1402 – 1412, Jul. 2020.
    DOI: 10.4236/jamp.2020.87106
  15. A. J. Blomberg et al., “The Role of Ambient Particle Radioactivity in Inflammation and Endothelial Function in an Elderly Cohort,” Epidemiology , vol. 31, no. 4, pp. 499 – 508, Jul. 2020.
    DOI: 10.1097/EDE.0000000000001197
    PMid: 32282436
    PMCid: PMC7269805
  16. M. Jerrett et al., “Air pollution and meteorology as risk factors for COVID-19 death in a cohort from Southern California,” Environ. Int., vol. 171, 107675, Jan. 2023.
    DOI: 10.1016/j.envint.2022.107675
    PMid: 36565571
    PMCid: PMC9715495
  17. E. F. Yates et al., “Review on the biological, epidemiological, and statistical relevance of COVID-19 paired with air pollution,” Environ. Adv ., vol. 8, no. 4, 100250, Jul. 2022.
    DOI: 10.1016/j.envadv.2022.100250
    PMid: 35692605
    PMCid: PMC9167046
  18. M. Travaglio et al., “Links between air pollution and COVID-19 in England,” Environ. Pollut., vol. 268, part A, 115859, Jan. 2021.
    DOI: 10.1016/j.envpol.2020.115859
    PMid: 33120349
    PMCid: PMC7571423
  19. Y. M. Baron, “Could changes in the airborne pollutant particulate matter acting as a viral vector have exerted selective pressure to cause COVID-19 evolution?,” Med. Hypotheses, vol. 146, 110401, Jan. 2021.
    DOI: 10.1016/j.mehy.2020.110401
    PMid: 33303307
    PMCid: PMC7679512
  20. M. Jerrett et al., “Air pollution and meteorology as risk factors for COVID-19 death in a cohort from Southern California,” Environ. Int., vol. 171, 107675, Jan. 2023.
    DOI: 10.1016/j.envint.2022.107675
    PMid: 36565571
    PMCid: PMC9715495
  21. B. Neupane et al., “Long-term exposure to ambient air pollution and risk of hospitalization with community-acquired pneumonia in older adults,”Am. J. Respir. Crit. Care Med., vol. 181, no. 1, pp. 47 – 53, Jan. 2010.
    DOI: 10.1164/rccm.200901-0160OC
    PMid: 19797763
  22. Y. M. Baron, L. Camilleri, “The Emergence of Ten SARS-CoV-2 Variants and Airborne PM2.5,” Virol. Curr. Res., vol. 5, no. 6, 141, Nov. 2021.
    Retrieved from: https://www.hilarispublisher.com/open-access/the-emergence-of-ten-sarscov2-variants-and-airborne-pmsub25sub-83896.html
    Retrieved on: Feb. 8, 2023
  23. Y. M. Baron, “Are there medium to outdoor multifaceted effects of the airborne pollutant PM2.5 determining the emergence of SARS-CoV-2 variants?,” Med. Hypotheses, vol. 158, 110718, Jan. 2022.
    DOI: 10.1016/j.mehy.2021.110718
    PMid: 34758423
    PMCid: PMC8526108
  24. A. Facciola, P. Lagana, G. Caruso, “The COVID-19 pandemic and its implications on the environment,” Environ. Res., vol. 201, 111648, Oct. 2021.
    DOI: 10.1016/j.envres.2021.111648
    PMid: 34242676
    PMCid: PMC8261195
  25. T. Sagawa et al., “Exposure to particulate matter upregulates ACE2 and COVID-19 Environmental Dependence 21 TMPRSS2 expression in the murine lung,” Environ. Res., vol. 195, 110722, Apr. 2021.
    DOI: 10.1016/j.envres.2021.110722
  26. M. A. Zoran, R. S. Savastru, D. M. Savastru, M. N. Tautan, “Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy,” Sci. Total Environ ., vol. 738, no. 6, 139825, Oct. 2020.
    DOI: 10.1016/j.scitotenv.2020.139825
    PMid: 32512362
    PMCid: PMC7265857
  27. M. A. Zoran, R. S. Savastru, D. M. Savastru, M. N. Tautan, “Impacts of exposure to air pollution, radon and climate drivers on the COVID-19 pandemic in Bucharest, Romania: A time series study,” Environ. Res., vol. 212, part D, 113437, Sep. 2022.
    DOI: 10.1016/j.envres.2022.113437
    PMid: 35594963
    PMCid: PMC9113773
  28. J. L. Domingo, M. Marqu`es, J. Rovira, “Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review,” Environ. Res., vol. 188, 109861, Sep. 2020.
    DOI: 10.1016/j.envres.2020.109861
    PMid: 32718835
    PMCid: PMC7309850
  29. J. L. Domingo, J. Rovira, “Effects of air pollutants on the transmission and severity of respiratory viral infections,” Environ. Res., vol. 187, 109650, Aug. 2020.
    DOI: 10.1016/j.envres.2020.109650
    PMid: 32416357
    PMCid: PMC7211639
  30. N. H. Orak, “Effect of ambient air pollution and meteorological factors on the potential transmission of COVID-19 in Turkey,” Environ. Res., vol. 212,
    part E, 113646, Sep. 2022.
    DOI: 10.1016/j.envres.2022.113646
    PMid: 35688216
    PMCid: PMC9172252
  31. A. Srivastava, “COVID-19 and air pollution and meteorology-an intricate relationship: A review,”Chemosphere, vol. 263, 128297, Jan. 2021.
    DOI: 10.1016/j.chemosphere.2020.128297
    PMid: 33297239
    PMCid: PMC7487522
  32. F. Tian et al., “Ambient air pollution and low temperature associated with case fatality of COVID-19: A nationwide retrospective cohort study in China,” The Innovation, vol. 2, no. 3, 100139, Aug. 2021.
    DOI: 10.1016/j.xinn.2021.100139
    PMid: 34189495
    PMCid: PMC8226106
  33. A. Sanchez-Lorenzo et al., “Did anomalous atmospheric circulation favor the spread of COVID-19 in Europe?” Environ. Res., vol. 194, 110626, Mar. 2021.
    DOI: 10.1016/j.envres.2020.110626
    PMid: 33345895
    PMCid: PMC7746124
  34. N. R. Rahimi et al., “Bidirectional association between COVID- 19 and the environment: A systematic review,” Environ. Res., vol. 194, no. 2, 110692, Mar. 2021.
    DOI: 10.1016/j.envres.2020.110692
    PMid: 33385384
    PMCid: PMC7833965
  35. J. D. Ford et al., “Interactions between climate and COVID-19,” Lancet Planet. Health , vol. 6, no. 10,
    pp. e825 – e833, Oct. 2022.
    DOI: 10.1016/S2542-5196(22)00174-7
    PMid: 36208645
    PMCid: PMC9534524
  36. V. Yilmaz, Y. Can, “Impact of knowledge, concern and awareness about global warming and global climatic change on environmental behavior,” Environ. Dev. Sustain ., vol. 22, no. 7, pp. 6245 – 6260, Oct. 2020.
    DOI: 10.1007/s10668-019-00475-5
  37. Y. Matiiuk, R. Krikštolaitis, G. Liobikienė, “The Covid-19 pandemic in context of climate change perception and resource-saving behavior in the European Union countries,” J. Clean. Prod., vol. 395, no. 7, 136433, Apr. 2023.
    DOI: 10.1016/j.jclepro.2023.136433
    PMid: 36818660
    PMCid: PMC9925455