Vol. 8, 2023



Kahramon Mamatkulov, Anka Jevremović, Darya Zakrytnaya, Yersultan Arynbek, Nina Vorobjeva, Grigory Arzumanyan

Pages: 31-35

DOI: 10.37392/RapProc.2023.07

In this study, we aimed to investigate the impact of radiation across a wide range of wavelengths, from UV-A to red visible light, on the role of neutrophils in inflammatory, autoimmune, and oncological diseases. Our focus was on understanding the photoacceptance process involving two cytochromes: cytochrome_b558 and cytochrome_c oxidase. Through the utilization of Raman spectroscopy, we recorded characteristic Raman frequencies corresponding to various reactive oxygen species (ROS) and low-frequency lattice vibrational modes for citrulline. By employing selective inhibitors of NADPH oxidase (apocynin) and PAD4 (GSK484), we were able to establish that when neutrophils are exposed to light of different wavelengths, it activates signaling pathways that lead to the formation of NETs (neutrophil extracellular traps) through the involvement of NADPH oxidase and PAD4. During the irradiation of neutrophils, we observed distinct peaks indicating the presence of ROS and citrulline, suggesting the participation of intracellular ROS during light exposure. Development of novel drugs aimed at suppressing NETs formation could potentially inhibit NET formation at sites exposed to UV and visible light. This could result in a reduction in symptoms related to UV-induced photoaging and other forms of organ damage.
  1. H. Takei, A. Araki, H. Watanabe, A. Ichinose, F. Sendo, “Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis,” J. Leukoc. Biol., vol. 59, no. 2, pp. 229 – 240, Feb. 1996.
    DOI: 10.1002/jlb.59.2.229
    PMid: 8603995
  2. V. Brinkmann et al., “Neutrophil Extracellular Traps Kill Bacteria,” Science , vol. 303, no. 5663, pp. 1532 – 1535, Mar. 2004.
    DOI: 10.1126/science.1092385
    PMid: 15001782
  3. B. E. Steinberg, S. Grinstein, “Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death,” Sci. STKE., vol. 2007, no. 379, p. pe11, Mar. 2007.
    DOI: 10.1126/stke.3792007pe11
    PMid: 17392241
  4. B. Pinegin, N. Vorobjeva, V. Pinegin, “Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity,” Autoimmun. Rev., vol. 14, no. 7, pp. 633 – 640, Jul. 2015.
    DOI: 10.1016/j.autrev.2015.03.002
    PMid: 25797532
  5. N. V. Vorobjeva, B. V. Pinegin, “Neutrophil extracellular traps: Mechanisms of formation and role in health and disease,” Biochemistry (Mosc.), vol. 79, no. 12, pp. 1286 – 1296, Dec. 2014.
    DOI: 10.1134/S0006297914120025
    PMid: 25716722
  6. N. V. Vorobjeva, B. V. Chernyak, NETosis: “Molecular Mechanisms, Role in Physiology and Pathology,” Biochemistry (Mosc.), vol. 85, no. 10, pp. 1178 – 1190, Oct. 2020.
    DOI: 10.1134/S0006297920100065
    PMid: 33202203
    PMCid: PMC7590568
  7. S. B. Owusu, S. Dupré-Crochet, T. Bizouarn, C. Houée-Levin, L. Baciou, “Accumulation of Cytochrome b 558 at the Plasma Membrane: Hallmark of Oxidative Stress in Phagocytic Cells,” Int. J. Mol. Sci., vol. 23,no. 2, 767, Jan. 2022.
    DOI: 10.3390/ijms23020767
    PMid: 35054950
    PMCid: PMC8775928
  8. F. Rijken et al., “Pathophysiology of photoaging of human skin: Focus on neutrophils,” Photochem. Photobiol. Sci., vol. 5, no. 2, pp. 184 – 189, Feb. 2006.
    DOI: 10.1039/b502522b
    PMid: 16465304
  9. G. J. Fisher et al., “Ultraviolet irradiation increases matrix metalloproteinase-8 protein in human skin in vivo,” J. Invest. Dermatol ., vol. 117, no. 2, pp. 219 – 226, Aug. 2001.
    DOI: 10.1046/j.0022-202X.2001.01432.x
    PMid: 11511297
  10. S. Cho et al., “Infrared plus visible light and heat from natural sunlight participate in the expression of MMPs and type I procollagen as well as infiltration of inflammatory cell in human skin in vivo,” J. Dermatol. Sci ., vol. 50, no. 2, pp. 123 – 133, May 2008.
    DOI: 10.1016/j.jdermsci.2007.11.009
    PMid: 18194849
  11. S. Skopelja-Gardner et al., “The early local and systemic Type I interferon responses to ultraviolet B light exposure are cGAS dependent,” Sci. Rep ., vol. 10, no. 1, 7908, May 2020.
    DOI: 10.1038/s41598-020-64865-w
    PMid: 32404939
    PMCid: PMC7220927
  12. S. Skopelja-Gardner et al., “Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation,” Proc. Natl. Acad. Sci. U.S.A ., vol. 118, no. 3, e2019097118, Jan. 2021.
    DOI: 10.1073/pnas.2019097118
    PMid: 33397815
    PMCid: PMC7826360
  13. S. B. Owusu, S. Dupré-Crochet, T. Bizouarn, C. Houée-Levin, L. Baciou, “Accumulation of Cytochrome b558 at the Plasma Membrane: Hallmark of Oxidative Stress in Phagocytic Cells,” Int. J. Mol. Sci., vol. 23, no. 2, 767, Jan. 2022.
    DOI: 10.3390/ijms23020767
    PMid: 35054950
    PMCid: PMC8775928
  14. C. Kohchi, H. Inagawa, T. Nishizawa, G. I. Soma, “ROS and innate immunity,” Anticancer Res., vol. 29, no. 3, pp. 817 – 821, Mar. 2009.
    PMid: 19414314
  15. T. I. Karu, “Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation,” IUBMB Life, vol. 62, no. 8, pp. 607 – 610, Aug. 2010.
    DOI: 10.1002/iub.359
    PMid: 20681024
  16. S. Hallén, P. Brzezinski, “Light-induced structural changes in cytochrome c oxidase: implication for the mechanism of electron and proton gating,” Biochim. Biophys. Acta Bioenerg., vol. 1184, no. 2-3, pp. 207 – 218, Mar. 1994.
    DOI: 10.1016/0005-2728(94)90225-9
    PMid: 8130251
  17. M. Kato, K. Shinzawa, S. Yoshikawa, “Cytochrome oxidase is a possible photoreceptor in mitochondria,” Photobiochem. Photobiophys., vol. 2, no. 4-5, 263 – 270, 1981.
  18. D. Pastore, M. Greco, S. Passarella, “Specific helium-neon laser sensitivity of the purified cytochrome c oxidase,” Int. J. Radiat. Biol., vol. 76, no. 6, pp. 863 – 870, Jun. 2000.
    DOI: 10.1080/09553000050029020
    PMid: 10902741
  19. B. Amulic, C. Cazalet, G. L. Hayes, K. D. Metzler, A. Zychlinsky, “Neutrophil function: From mechanisms to disease,” Annu. Rev. Immunol ., vol. 30, pp. 459 – 489, 2012.
    DOI: 10.1146/annurev-immunol-020711-074942
    PMid: 22224774
  20. A. S. Rohrbach, D. J. Slade, P. R. Thompson, K. A. Mowen, “Activation of PAD4 in NET formation,” Front. Immunol., vol. 3, 360, Nov. 2012.
    DOI: 10.3389/fimmu.2012.00360
    PMid: 23264775
    PMCid: PMC3525017
  21. M. Freitas, G. Porto, J. L. F. C. Lima, E. Fernandes, “Isolation and activation of human neutrophils in vitro. The importance of the anticoagulant used during blood collection,” Clin. Biochem., vol. 41, no. 7-8, pp. 570 – 575, May 2008.
    DOI: 10.1016/j.clinbiochem.2007.12.021
    PMid: 18226596
  22. S. Mütze et al., “Myeloperoxidase-derived Hypochlorous Acid Antagonizes the Oxidative Stress-mediated Activation of Iron Regulatory Protein 1,” J. Biol. Chem ., vol. 278, no. 42, pp. 40542 – 40549, Oct. 2003.
    DOI: 10.1074/jbc.M307159200
    PMid: 12888561
  23. М. А. Симонян, М. А. Бабаян, Г. М. Симонян, “Цитохромы b-558 из сыворотки крови и мембран эритроцитов. выделение, очистка и краткие характеристики,” Биохимия, том 60, но. 12, стр. 1977 – 1987, 1995.
    (M. A. Simonyan, M. A. Babayan, G. M. Simonyan, “Cytochromes b-558 from blood serum and erythrocyte membranes; isolation, purification and characteristics,” Biochemistry, vol. 60, no. 12, pp. 1977 – 1987, 1995.)
    Retrieved from: https://biochemistrymoscow.com/ru/archive/1995/60-12-1977/
    Retrieved on: Sep. 12, 1995
  24. C. Zang et al., “Ultrafast Proteinquake Dynamics in Cytochrome c,” J. Am. Chem. Soc ., vol. 131, no. 8, pp. 2846 – 2852, Mar. 2009.
    DOI: 10.1021/ja8057293
    PMid: 19203189
  25. M. Reth, “Hydrogen peroxide as second messenger in lymphocyte activation,” Nat. Immunol., vol. 3, no. 12, pp. 1129 – 1134, Dec. 2002.
    DOI: 10.1038/ni1202-1129
    PMid: 12447370