Vol. 8, 2023

Radon and Thoron


Dan Savastru, Maria Zoran, Roxana Savastru, Marina Tautan

Pages: 54-59

DOI: 10.37392/RapProc.2023.12

As a potential precursor of earthquakes, this study aims to investigate temporal variations of radon (222Rn) concentration levels in air near the ground by the use of solid-state nuclear track detectors (SSNTD) CR-39 (short term-10 days exposure time) in relation with some important seismic events recorded in Vrancea geotectonic active region, in Romania. The experimental observations reveal a strong correlation between the recorded radon emissions peaks associated with some moderate earthquakes of moment magnitude Mw ≥ 5.0 recorded during 2012-2022 period. The standard deviation of the radon measurements (s) was about 10% of the average radon concentration. The recorded pre-signals radon anomalies of earthquakes during eleven years monitoring period performed with solid state nuclear track detectors CR-39 suggest that earthquake precursors registered before moderate or strong seismic events are associated with some physical processes in or near the Vrancea earthquake fault zones or its neighbouring. This paper considered also the effects of meteorological parameters (air temperature, pressure, relative humidity, wind intensity and rainfall) on radon in air near the ground concentrations. The present results show existence of coupling between lithosphere-surfacesphere-atmosphere-ionosphere associated with preparation and seismic event occurring. Continuously monitoring of radon concentration anomalies in air near the ground in relation with Vrancea seismicity is an important issue and a surveillance tool in the field of earthquake hazard for Romania.
  1. I. Čeliković et al., “Outdoor radon as a tool to estimate radon priority areas—a literature overview,” Int. J. Environ. Res. Public Health, vol. 19, no. 2, 662, Jan. 2022.
    DOI: 10.3390/ijerph19020662
    PMid: 35055485
    PMCid: PMC8775861
  2. Y. Chen et al., “Occurrence characteristics and influencing factors of uranium and radon in deep-buried thermal storage aquifers,” J. Radioanal. Nucl. Chem ., vol. 331, no. 2, pp. 755 – 767, Feb. 2022.
    DOI: 10.1007/s10967-021-08137-5
  3. T. Chetia, S. Baruah, C. Dey, S. Baruah, S. Sharma, “Seismic induced soil gas radon anomalies observed at multiparametric geophysical observatory, Tezpur (Eastern Himalaya), India: an appraisal of probable model for earthquake forecasting based on peak of radon anomalies,” Nat. Hazards , vol. 111, no. 3, pp. 3071 – 3098, Apr. 2022.
    DOI: 10.1007/s11069-021-05168-9
  4. D. H. K. Mohammed, F. Külahcı, A. Muhammed, “Determination of possible responses of Radon-222, magnetic effects, and total electron content to earthquakes on the North Anatolian Fault Zone, Turkiye: an ARIMA and Monte Carlo Simulation,” Nat. Hazards, vol. 108, no. 3, pp. 2493 – 2512, Sep. 2021.
    DOI: 10.1007/s11069-021-04785-8
  5. R. C. Tiwari, H. P. Jaishi, S. Singh, R. P. Tiwari, “A study of soil radon and seismicity along active fault region in northeastern India,” Arab. J. Geosci., vol. 16, 253, Mar. 2023.
    DOI: 10.1007/s12517-023-11341-0
  6. S. Pulinets, D. Ouzounov, “Lithosphere–atmosphere– ionosphere coupling (LAIC) model—A unified concept for earthquake precursors validation,” J. Asian Earth Sci ., vol. 41, no. 4-5, pp. 371 – 382, Jun. 2011.
    DOI: 10.1016/j.jseaes.2010.03.005
  7. M. Radulian et al., “Revised catalogue of earthquake mechanisms for the events occurred in Romania until the end of twentieth century: REFMC,” Acta Geod. Geophys ., vol. 54, no. 1, pp. 3 – 18, Mar. 2019.
    DOI: 10.1007/s40328-018-0243-y
  8. L. Petrescu, F. Borleanu, M. Radulian, A. Ismail-Zadeh, L. Maţenco, “Tectonic regimes and stress patterns in the Vrancea Seismic Zone: Insights into intermediate-depth earthquake nests in locked collisional settings,” Tectonophysics, vol. 799, 228688, Jan. 2021.
    DOI: 10.1016/j.tecto.2020.228688
  9. T. Haider et al., “Identification of radon anomalies induced by earthquake activity using intelligent systems,” J. Geochem. Explor., vol. 222, 106709, Mar. 2021.
    DOI: 10.1016/j.gexplo.2020.106709
  10. S. Sukanya, J. Noble, S. Joseph, “Application of radon (222Rn) as an environmental tracer in hydrogeological and geological investigations: An overview,” Chemosphere, vol. 303, pt. 3, 135141, Sep. 2022.
    DOI: 10.1016/j.chemosphere.2022.135141
    PMid: 35660388
  11. F. Khan, S. A. Khattak, Z. Wazir, M. Waqas, “Spatial distribution of radon concentrations in Balakot-Bagh (B–B) Fault Line and adjoining areas, Lesser Himalayas, North Pakistan,” Environ. Earth Sci., vol. 80, 291, Mar. 2021.
    DOI: 10.1007/s12665-021-09569-8
  12. M. A. Khan, N. U. Khattak, M. Hanif, “Radon emission along faults: a case study from district Karak, Sub-Himalayas, Pakistan,” J. Radioanal. Nucl. Chem ., vol. 331, no. 5, pp. 1995 – 2003, May 2022.
    DOI: 10.1007/s10967-022-08283-4
  13. P. S. Miklyaev et al., “Radon transport in permeable geological environments,” Sci. Total Environ., vol. 852, 158382, Dec. 2022.
    DOI: 10.1016/j.scitotenv.2022.158382
    PMid: 36049692
  14. J. Planinić, V. Radolić, B. Vuković, “Radon as an earthquake precursor,” Nucl. Instrum. Methods Phys. Res. Sect. A, vol. 530, no. 3, pp. 568 – 574, Sep. 2004.
    DOI: 10.1016/j.nima.2004.04.209
  15. I. P. Dobrovolsky, S. I. Zubkov, V. I. Miachkin, “Estimation of the size of earthquake preparation zones,” Pure Appl. Geophys., vol. 117, no. 5, pp. 1025 – 1044, Sep. 1979.
    DOI: 10.1007/BF00876083
  16. I. P. Dobrovolsky, N. I. Gershenzon, M. B. Gokhberg, “Theory of electrokinetic effects occurring at the final stage in the preparation of a tectonic earthquake,” Phys. Earth Planet. Inter., vol. 57, no. 1-2, pp. 144 – 156, Oct. 1989.
    DOI: 10.1016/0031-9201(89)90224-0
  17. B. R. Arora et al., “Assessment of the response of the meteorological/hydrological parameters on the soil gas radon emission at Hsinchu, northern Taiwan: A prerequisite to identify earthquake precursors,” J. Asian Earth Sci., vol. 149, pp. 49 – 63, Nov. 2017.
    DOI: 10.1016/j.jseaes.2017.06.033
  18. V. Walia et al., “Temporal variation of soil gas compositions for earthquake surveillance in Taiwan,” Radiat. Meas., vol. 50, pp. 154 – 159, Mar. 2013.
    DOI: 10.1016/j.radmeas.2012.11.007
  19. H. Woith, “Radon earthquake precursor: A short review,” Eur. Phys. J. Spec. Top ., vol. 224, no. 4, pp. 611 – 627, May 2015.
    DOI: 10.1140/epjst/e2015-02395-9
  20. Y. Mao, L. Zhang, H. Wang, Q. Guo, “The temporal variation of radon concentration at different depths of soil: A case study in Beijing,” J. Environ. Radioact ., vol. 264, 107200, Aug. 2023.
    DOI: 10.1016/j.jenvrad.2023.107200
    PMid: 37210779
  21. Z. Chen et al., “Radon emission from soil gases in the active fault zones in the Capital of China and its environmental effects,” Sci. Rep., vol. 8, no. 1, 16772, Nov. 2018.
    DOI: 10.1038/s41598-018-35262-1
    PMid: 30425320
    PMCid: PMC6233208
  22. H. Friedmann, “Radon in earthquake prediction research,” Radiat. Prot. Dosimetry , vol. 149, no. 2, pp. 177 – 184, Apr. 2012.
    DOI: 10.1093/rpd/ncr229
    PMid: 21669940
  23. X. Han et al., “Rn and CO2 geochemistry of soil gas across the active fault zones in the capital area of China,” Nat. Hazards Earth Syst. Sci., vol. 14, no. 10, pp. 2803 – 2815, Oct. 2014.
    DOI: 10.5194/nhess-14-2803-2014
  24. G. Haquin, H. Zafrir, D. Ilzycer, N. Weisbrod, “Effect of atmospheric temperature on underground radon: a laboratory experiment,” J. Environ. Radioact ., vol. 253-254, 106992, Nov. 2022.
    DOI: 10.1016/j.jenvrad.2022.106992
    PMid: 36058181
  25. P. S. Miklyaev et al., “Radon transport in permeable geological environments,” Sci. Total Environ., vol. 852, 158382, Dec. 2022.
    DOI: 10.1016/j.scitotenv.2022.158382
    PMid: 36049692
  26. A. Muhammad, F. Külahcı, S. Birel, “Investigating radon and TEC anomalies relative to earthquakes via AI models,” J. Atmos. Sol. Terr. Phys., vol. 245, 106037, Apr. 2023.
    DOI: 10.1016/j.jastp.2023.106037
  27. M. Zoran, R. Savastru, D. Savastru, “Radon levels assessment in relation with seismic events in Vrancea region,” J. Radioanal. Nucl. Chem., vol. 293, no. 2, pp. 655 – 663, Aug. 2012.
    DOI: 10.1007/s10967-012-1712-3
  28. M. Zoran, R. Savastru, D. Savastru, D. Mateciuc, “Presignal Signature of Radon (Rn222) for Seismic Events,” in Seismic Hazard and Risk Assessment , R. Vacareanu, C. Ionescu, Eds., 1st ed., Cham, Switzerland: Springer Int. Publishing AG, 2018, pt. I, pp. 117 – 130.
    DOI: 10.1007/978-3-319-74724-8_8
  29. M. Zoran, R. Savastru, D. Savastru, D. Mateciuc, “Investigation of earthquake precursors in Vrancea active geotectonic region through geospatial and field data,” AIP Conf. Proc., vol. 2075, no. 1, 120027, Feb. 2019.
    DOI: 10.1063/1.5091285