Vol. 4, 2019
Radiation Detectors
NEUTRON ACTIVATION ANALYSIS TO PROBE THE AIR POLLUTION USING PLANT BIOMONITORING IN EGYPT
Yasmin Sarhan, Wael Badawy, Marina Frontasyeva, Wafaa Arafa, Abd ElAzeem Hussein, Hussein El-samman
Pages: 125–130
DOI: 10.37392/RapProc.2019.25
Abstract | References | Full Text (PDF)
A comprehensive characterization of the biomonitoring of air pollution assessment using Eucalyptus Globulus and Ficus Nitida plants in Cairo and Minoufia cities in Egypt is given. The concentrations (ppm) of thirty-two elements were determined in 30 leaf samples by means of the epithermal neutron activation analytical technique. The collected samples were irradiated by epithermal neutrons at REGATA -pulsed reactor IBR-2 in Dubna, Russian Federation. The obtained concentrations of; Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Sb, I, Cs, Ba, La, Sm, Tb, Hf, Ta, Au, Th, and U were compared to the reference plant. The analysis of the obtained concentrations revealed that the concentrations at some sites in Menoufia Governorate were significantly higher than those in Cairo, in spite of the intense population, heavy traffic, and vehicle waste disposed in Cairo. The remarkable increase of metals in Menoufia Governorate has occurred most probably due to the uncontrolled disposal of industrial and domestic waste. In addition, the study shows the Ficus Nitida plant responsiveness to metals is higher than Eucalyptus Globulus.
- P. L. Kinney, “Climate change, air quality, and human health,” Am. J. Prev. Med., vol. 35, no. 5, pp. 459 – 467, Nov. 2008.
DOI: 10.1016/j.amepre.2008.08.025
PMid: 18929972 - M. Brauer et al., “Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution,” Environ. Sci. Technol., vol. 46, no. 2, pp. 652 – 660, Jan. 2012.
DOI: 10.1021/es2025752
PMid: 22148428
PMCid: PMC4043337 - K. H. Kim, E. Kabir, S. Kabir, “A review on the human health impact of airborne particulate matter,” Environ. Int., vol. 74, pp. 136 – 143, Jan. 2015.
DOI: 10.1016/j.envint.2014.10.005
PMid: 25454230 - A. Yalaltdinova, J. Kim, N. Baranovskaya, L. Rikhvanov, “Populus nigra L. as a bioindicator of atmospheric trace element pollution and potential toxic impacts on human and ecosystem,” Ecol. Indic., vol. 95, pp. 974 - 983, Dec. 2018.
DOI: 10.1016/j.ecolind.2017.06.021 - S. V. Gorelova, M. V. Frontasyeva, "The Use of Higher Plants in Biomonitoring and Environmental Bioremediation," in Phytoremediation, vol. 5, A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, L. Newman, Eds., New York (NY), USA: Springer Int. Publ., 2017, ch. 5, sec. 5.3, pp. 103 - 156.
Retrieved from: http://93.174.95.29/_ads/4B05012D1ADCCBC5C812A088B059F8FE
Retrieved on: Apr. 15, 2019 - A. A. Shaltout, M. I. Khoder, A. A. El-Abssawy, S. K. Hassan, D. L. Borges, “Determination of rare earth elements in dust deposited on tree leaves from Greater Cairo using inductively coupled plasma mass spectrometry,” Environ. Pollut., vol. 178, pp. 197 – 201, Jul. 2013.
DOI: 10.1016/j.envpol.2013.03.044
PMid: 23583939 - P. H. Freer-Smith, A. A. El-Khatib, G. Taylor, “Capture of Particulate Pollution by Trees: A Comparison of Species Typical of Semi-Arid Areas (Ficus Nitida and Eucalyptus Globulus) with European and North American Species,” Water, Air, Soil Pollut., vol. 155, no. 1 - 4, pp. 173 – 187, Jun. 2004.
DOI: 10.1023/B:WATE.0000026521.99552.fd - A. A. El-Khatib, F. A. Faheed, M. M. Azooz, “Physiological response of Eucalyptus rostrata to heavy metal air pollution,” El-Minia Sci. Bull., vol. 15, no. 2, pp. 429 – 451, 2004.
Retrieved from: https://www.academia.edu/27489910/Physiological_response_of_Eucalyptus_rostorata_to_heavy_metal_air_pollution
Retrieved on: Apr. 5, 2019 - M. V. Frontasyeva, “NAA for Life Sciences at Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research in Dubna,” Ecol. Chem. Eng. S, vol. 18, no. 3, pp. 281 - 304, 2011.
Retrieved from: http://tchie.uni.opole.pl/freeECE/S_18_3/Frontasyeva_18(S3).pdf
Retrieved on: Apr. 5, 2019 - M. Tomašević, M. Aničić, Lj. Jovanović, A. Perić-Grujić, M. Ristić, “Deciduous tree leaves in trace elements biomonitoring: A contribution to methodology,” Ecol. Indic., vol. 11, no. 6, pp. 1689 – 1695, Nov. 2011.
DOI: 10.1016/j.ecolind.2011.04.017 - W. M. Badawy et al., “Instrumental neutron activation analysis of soil and sediment samples from Siwa Oasis, Egypt,” Phys. Part. Nucl. Lett., vol. 12, no. 4, pp. 637 – 644, Jul. 2015.
DOI: 10.1134/S154747711504007X - M. V. Frontasyeva, “Neutron activation analysis in the life sciences,” Phys. Part. Nucl., vol. 42, no. 2, pp. 332 – 378, Mar. 2011.
DOI: 10.1134/S1063779611020043 - M. V. Frontasyeva, S. S. Pavlov, Analytical investigations at the ibr-2 reactor in Dubna, Rep. JINR-E--14-2000-177, Jt. Inst. Nucl. Res, Dubna, Russia, 2000.
Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.475.614&rep=rep1&type=pdf
Retrieved on: Nov. 3, 2019 - A. I. Madadzada et al., “Assessment of atmospheric deposition of major and trace elements using neutron activation analysis and GIS technology: Baku - Azerbaijan,” Microchem. J., vol. 147, pp. 605 – 614, Jun. 2019.
DOI: 10.1016/j.microc.2019.03.061 - A. Kabata-Pendias, H. Pendias, Trace Elements in Soils and Plants, 3rd ed., Boca Raton (FL), USA: CRC Press, 2001.
Retrieved from: http://base.dnsgb.com.ua/files/book/Agriculture/Soil/Trace-Elements-in-Soils-and-Plants.pdf
Retrieved on: Jun. 14, 2019 - M. Almeida-Silva, N. Canha, M. C. Freitas, H. M. Dung, I. Dionísio, “Air pollution at an urban traffic tunnel in Lisbon, Portugal: an INAA study,” Appl. Radiat. Isot., vol. 69, no. 11, pp. 1586 – 1591, Nov. 2011.
DOI: 10.1016/j.apradiso.2011.01.014
PMid: 21288730 - L. Qi et al., “Source identification of trace elements in the atmosphere during the second Asian Youth Games in Nanjing, China: Influence of control measures on air quality,” vol. 7, no. 3, pp. 547 – 556, May 2016.
DOI: 10.1016/j.apr.2016.01.003 - Natural and Anthropogenic Sources of Trace Elements in the Environment, USGS, Reston (VA), USA.
Retrieved from: http://www.cprm.gov.br/publique/media/gestao_territorial/geologia_medica/natural_anthropogenic_sources.pdf
Retrieved on: Apr. 18, 2019 - S. Zhou et al., “Trace metals in atmospheric fine particles in one industrial urban city : spatial variations, sources, and health implications,” J. Environ. Sci., vol. 26, no. 1, pp. 205 – 213, Jan. 2014.
DOI: 10.1016/s1001-0742(13)60399-x
PMid: 24649708 - S. Wilbur et al., “Potential for human exposure,” in Toxicological Profile for Chromium, Atlanta (GA), USA: Agency for Toxic Subst. Dis. Regist., 2012, ch. 6, pp. 363 – 399.
Retrieved from: https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf
Retrieved on: Sep. 12, 2019 - S. Hoornaert, H. van Malderen, R. van Grieken, “Gypsum and Other Calcium-Rich Aerosol Particles above the North Sea,” Environ. Sci. Technol., vol. 30, no. 5, pp. 1515 – 1520, Apr. 1996.
DOI: 10.1021/es9504350 - B. Markert, “Establishing of ‘Reference Plant’ for inorganic characterization of different plant species by chemical fingerprinting,” Water, Air, Soil Pollut., vol. 64, no. 3 - 4, pp. 533 – 538, Sep. 1992.
DOI: 10.1007/BF00483363 - B. Markert, “Instrumental multi-element analysis in plant materials: A modern method in environmental chemistry and tropical systems research,” Environ. Geochem. Trop., pp. 75 - 95, Apr. 2006.
DOI: 10.1007/BFb0010907 - A. Kabata-Pendias, H. Pendias, Trace Elements in Soils and Plants, 2nd ed., Boca Raton (FL), USA: CRC Press, 1992.
Retrieved from: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1609922
Retrieved on: Apr. 30, 2019