Vol. 4, 2019

Original research papers

Radiation Detectors


Yasmin Sarhan, Wael Badawy, Marina Frontasyeva, Wafaa Arafa, Abd ElAzeem Hussein, Hussein El-samman

Pages: 125–130

DOI: 10.37392/RapProc.2019.25

A comprehensive characterization of the biomonitoring of air pollution assessment using Eucalyptus Globulus and Ficus Nitida plants in Cairo and Minoufia cities in Egypt is given. The concentrations (ppm) of thirty-two elements were determined in 30 leaf samples by means of the epithermal neutron activation analytical technique. The collected samples were irradiated by epithermal neutrons at REGATA -pulsed reactor IBR-2 in Dubna, Russian Federation. The obtained concentrations of; Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Sb, I, Cs, Ba, La, Sm, Tb, Hf, Ta, Au, Th, and U were compared to the reference plant. The analysis of the obtained concentrations revealed that the concentrations at some sites in Menoufia Governorate were significantly higher than those in Cairo, in spite of the intense population, heavy traffic, and vehicle waste disposed in Cairo. The remarkable increase of metals in Menoufia Governorate has occurred most probably due to the uncontrolled disposal of industrial and domestic waste. In addition, the study shows the Ficus Nitida plant responsiveness to metals is higher than Eucalyptus Globulus.
  1. P. L. Kinney, “Climate change, air quality, and human health,” Am. J. Prev. Med., vol. 35, no. 5, pp. 459 – 467, Nov. 2008.
    DOI: 10.1016/j.amepre.2008.08.025
    PMid: 18929972
  2. M. Brauer et al., “Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution,” Environ. Sci. Technol., vol. 46, no. 2, pp. 652 – 660, Jan. 2012.
    DOI: 10.1021/es2025752
    PMid: 22148428
    PMCid: PMC4043337
  3. K. H. Kim, E. Kabir, S. Kabir, “A review on the human health impact of airborne particulate matter,” Environ. Int., vol. 74, pp. 136 – 143, Jan. 2015.
    DOI: 10.1016/j.envint.2014.10.005
    PMid: 25454230
  4. A. Yalaltdinova, J. Kim, N. Baranovskaya, L. Rikhvanov, “Populus nigra L. as a bioindicator of atmospheric trace element pollution and potential toxic impacts on human and ecosystem,” Ecol. Indic., vol. 95, pp. 974 - 983, Dec. 2018.
    DOI: 10.1016/j.ecolind.2017.06.021
  5. S. V. Gorelova, M. V. Frontasyeva, "The Use of Higher Plants in Biomonitoring and Environmental Bioremediation," in Phytoremediation, vol. 5, A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, L. Newman, Eds., New York (NY), USA: Springer Int. Publ., 2017, ch. 5, sec. 5.3, pp. 103 - 156.
    Retrieved from:
    Retrieved on: Apr. 15, 2019
  6. A. A. Shaltout, M. I. Khoder, A. A. El-Abssawy, S. K. Hassan, D. L. Borges, “Determination of rare earth elements in dust deposited on tree leaves from Greater Cairo using inductively coupled plasma mass spectrometry,” Environ. Pollut., vol. 178, pp. 197 – 201, Jul. 2013.
    DOI: 10.1016/j.envpol.2013.03.044
    PMid: 23583939
  7. P. H. Freer-Smith, A. A. El-Khatib, G. Taylor, “Capture of Particulate Pollution by Trees: A Comparison of Species Typical of Semi-Arid Areas (Ficus Nitida and Eucalyptus Globulus) with European and North American Species,” Water, Air, Soil Pollut., vol. 155, no. 1 - 4, pp. 173 – 187, Jun. 2004.
    DOI: 10.1023/B:WATE.0000026521.99552.fd
  8. A. A. El-Khatib, F. A. Faheed, M. M. Azooz, “Physiological response of Eucalyptus rostrata to heavy metal air pollution,” El-Minia Sci. Bull., vol. 15, no. 2, pp. 429 – 451, 2004.
    Retrieved from: https://www.academia.edu/27489910/Physiological_response_of_Eucalyptus_rostorata_to_heavy_metal_air_pollution
    Retrieved on: Apr. 5, 2019
  9. M. V. Frontasyeva, “NAA for Life Sciences at Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research in Dubna,” Ecol. Chem. Eng. S, vol. 18, no. 3, pp. 281 - 304, 2011.
    Retrieved from: http://tchie.uni.opole.pl/freeECE/S_18_3/Frontasyeva_18(S3).pdf
    Retrieved on: Apr. 5, 2019
  10. M. Tomašević, M. Aničić, Lj. Jovanović, A. Perić-Grujić, M. Ristić, “Deciduous tree leaves in trace elements biomonitoring: A contribution to methodology,” Ecol. Indic., vol. 11, no. 6, pp. 1689 – 1695, Nov. 2011.
    DOI: 10.1016/j.ecolind.2011.04.017
  11. W. M. Badawy et al., “Instrumental neutron activation analysis of soil and sediment samples from Siwa Oasis, Egypt,” Phys. Part. Nucl. Lett., vol. 12, no. 4, pp. 637 – 644, Jul. 2015.
    DOI: 10.1134/S154747711504007X
  12. M. V. Frontasyeva, “Neutron activation analysis in the life sciences,” Phys. Part. Nucl., vol. 42, no. 2, pp. 332 – 378, Mar. 2011.
    DOI: 10.1134/S1063779611020043
  13. M. V. Frontasyeva, S. S. Pavlov, Analytical investigations at the ibr-2 reactor in Dubna, Rep. JINR-E--14-2000-177, Jt. Inst. Nucl. Res, Dubna, Russia, 2000.
    Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
    Retrieved on: Nov. 3, 2019
  14. A. I. Madadzada et al., “Assessment of atmospheric deposition of major and trace elements using neutron activation analysis and GIS technology: Baku - Azerbaijan,” Microchem. J., vol. 147, pp. 605 – 614, Jun. 2019.
    DOI: 10.1016/j.microc.2019.03.061
  15. A. Kabata-Pendias, H. Pendias, Trace Elements in Soils and Plants, 3rd ed., Boca Raton (FL), USA: CRC Press, 2001.
    Retrieved from: http://base.dnsgb.com.ua/files/book/Agriculture/Soil/Trace-Elements-in-Soils-and-Plants.pdf
    Retrieved on: Jun. 14, 2019
  16. M. Almeida-Silva, N. Canha, M. C. Freitas, H. M. Dung, I. Dionísio, “Air pollution at an urban traffic tunnel in Lisbon, Portugal: an INAA study,” Appl. Radiat. Isot., vol. 69, no. 11, pp. 1586 – 1591, Nov. 2011.
    DOI: 10.1016/j.apradiso.2011.01.014
    PMid: 21288730
  17. L. Qi et al., “Source identification of trace elements in the atmosphere during the second Asian Youth Games in Nanjing, China: Influence of control measures on air quality,” vol. 7, no. 3, pp. 547 – 556, May 2016.
    DOI: 10.1016/j.apr.2016.01.003
  18. Natural and Anthropogenic Sources of Trace Elements in the Environment, USGS, Reston (VA), USA.
    Retrieved from: http://www.cprm.gov.br/publique/media/gestao_territorial/geologia_medica/natural_anthropogenic_sources.pdf
    Retrieved on: Apr. 18, 2019
  19. S. Zhou et al., “Trace metals in atmospheric fine particles in one industrial urban city : spatial variations, sources, and health implications,” J. Environ. Sci., vol. 26, no. 1, pp. 205 – 213, Jan. 2014.
    DOI: 10.1016/s1001-0742(13)60399-x
    PMid: 24649708
  20. S. Wilbur et al., “Potential for human exposure,” in Toxicological Profile for Chromium, Atlanta (GA), USA: Agency for Toxic Subst. Dis. Regist., 2012, ch. 6, pp. 363 – 399.
    Retrieved from: https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf
    Retrieved on: Sep. 12, 2019
  21. S. Hoornaert, H. van Malderen, R. van Grieken, “Gypsum and Other Calcium-Rich Aerosol Particles above the North Sea,” Environ. Sci. Technol., vol. 30, no. 5, pp. 1515 – 1520, Apr. 1996.
    DOI: 10.1021/es9504350
  22. B. Markert, “Establishing of ‘Reference Plant’ for inorganic characterization of different plant species by chemical fingerprinting,” Water, Air, Soil Pollut., vol. 64, no. 3 - 4, pp. 533 – 538, Sep. 1992.
    DOI: 10.1007/BF00483363
  23. B. Markert, “Instrumental multi-element analysis in plant materials: A modern method in environmental chemistry and tropical systems research,” Environ. Geochem. Trop., pp. 75 - 95, Apr. 2006.
    DOI: 10.1007/BFb0010907
  24. A. Kabata-Pendias, H. Pendias, Trace Elements in Soils and Plants, 2nd ed., Boca Raton (FL), USA: CRC Press, 1992.
    Retrieved from: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1609922
    Retrieved on: Apr. 30, 2019