Vol. 4, 2019

Original research papers



Nataša Popović, Vesna Stojiljković, Snežana Pejić, Ana Todorović, Ivan Pavlović, Snežana B. Pajović and Ljubica Gavrilović

Pages: 216–219

DOI: 10.37392/RapProc.2019.44

The hypothalamic–pituitary–adrenal (HPA) axis plays an important role in the adaptation of the organism to stress. Because of a key role of neuroendocrine system in response to a stressful situation, as well as a significant impact of stress on neuronal plasticity, in this work we investigated how chronic restraint stress (CRS: 2 hours × 14 days) affected the protein levels of BDNF in the prefrontal cortex (PFC), as well as the concentration of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) in the plasma. In addition, the aim of this study was to determine a possible correlation between levels of BDNF in the PFC and plasma CORT levels of animals exposed to CRS. We found that CRS increases levels of prefrontal BDNF protein by 25% and levels of CORT by 280%, but decreases levels of ACTH by 18%. Also, we recorded a low, but significant positive correlation between prefrontal BDNF levels and concentrations of CORT in the plasma of chronically stressed rats. Our data confirm that prefrontal BDNF might be an important regulator involved in the adaptive strategy of the HPA axis to maintain adequate reactivity in stress conditions provoked by CRS.
  1. J. P. Herman et al., “Regulation of the hypothalamic-pituitary-adrenocortical stress response,” Compr. Physiol., vol. 6, no. 2, pp. 603 – 621, Mar. 2016.
    DOI: 10.1002/cphy.c150015
    PMid: 27065163
    PMCid: PMC4867107
  2. B. S. McEwen, “Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators,” Eur. J. Pharmacol., vol. 583, no. 2 - 3, pp. 174 - 185, Apr. 2008.
    DOI: 10.1016/j.ejphar.2007.11.071
    PMid: 18282566
    PMCid: PMC2474765
  3. G. Naert, G. Ixart, T. Maurice, L. Tapia-Arancibia, L. Givalois, “Brain-derived neurotrophic factor and hypothalamic–pituitary–adrenal axis adaptation processes in a depressive-like state induced by chronic restraint stress,” Mol. Cell. Neurosci., vol. 46, no. 1, pp. 55 - 66, Jan. 2011.
    DOI: 10.1016/j.mcn.2010.08.006
    PMid: 20708081
  4. S. Chiba et al., “Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex,” Prog. Neuro-Psychopharmacol. Biol. Psychiatry., vol. 39, no. 1, pp. 112 - 119, Oct. 2012.
    DOI: 10.1016/j.pnpbp.2012.05.018
    PMid: 22664354
  5. J. Klein et al.,“Lesion of the medial prefrontal cortex and the subthalamic nucleus selectively affect depression-like behavior in rats,” Behav. Brain Res., vol. 213, no. 1, pp. 73 - 81, Nov. 2010.
    DOI: 10.1016/j.bbr.2010.04.036
    PMid: 20434489
  6. R. M. Sullivan, A. Gratton, “Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats,” J. Neurosci., vol. 19, no. 7, pp. 2834 - 2840, Apr. 1999.
    DOI: 10.1523/JNEUROSCI.19-07-02834.1999
    PMid: 10087094
    PMCid: PMC6786056
  7. M. Ivković et al., “Predictive value of sICAM-1 and sVCAM-1 as biomarkers of affective temperaments in healthy young adults,” J. Affect. Disord., vol. 207, pp. 47 – 52, Jan. 2017.
    DOI: 10.1016/j.jad.2016.09.017
    PMid: 27693464
  8. N. Popović et al., “Relationship between behaviors and catecholamine content in prefrontal cortex and hippocampus of chronically stressed rats,” in Proc. 5th Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2017), Budva, Montenegro, 2017, pp. 255 - 259.
    DOI: 10.21175/RadProc.2017.52
  9. N. Popović et al., “Modulation of Hippocampal Antioxidant Defense System in Chronically Stressed Rats by Lithium,” Oxid. Med. Cell. Longev., vol. 2019, Feb. 2019.
    DOI: 10.1155/2019/8745376
    PMid: 30911352
    PMCid: PMC6398005
  10. C. Phillips, “Brain-derived neurotrophic factor, depression, and physical activity: Making the neuroplastic connection,”Neural Plast., vol. 2017, Aug. 2017.
    DOI: 10.1155/2017/7260130
    PMid: 28928987
    PMCid: PMC5591905
  11. J. S. Dunham, J. F. W. Deakin, F. Miyajima, A. Payton, C. T. Toro, “Expression of hippocampal brain-derived neurotrophic factor and its receptors in Stanley consortium brains,” J. Psychiatr. Res., vol. 43, no. 14, pp. 1175 - 1184, Sep. 2009.
    DOI: 10.1016/j.jpsychires.2009.03.008
    PMid: 19376528
  12. T. Numakawa et al., “Production of BDNF by stimulation with antidepressant-related substances,” J. Biol. Med., vol. 1, no. 3, pp. 1 - 10, Jan. 2011.
    Retrieved from: https://www.researchgate.net/profile/Shuichi_Chiba/publication/249315928_Production_of_BDNF_by_Stimulation_with_ Antidepressant-related_Substances/links/0deec51e4a3240a9af000000/Production-of-BDNF-by-Stimulation-with-Antidepressant-related-Substances.pdf
    Retrieved on: Jan. 1, 2019
  13. L. Gavrilovic, N. Spasojevic, S. Dronjak, “Subsequent stress increases gene expression of catecholamine synthetic enzymes in cardiac ventricles of chronic-stressed rats,” Endocrine, vol. 37, no. 3, pp. 425 - 429, Jun. 2010.
    DOI: 10.1007/s12020-010-9325-5
    PMid: 20960163
  14. N. Popović et al., “Prefrontal catecholaminergic turnover and antioxidant defense system of chronically stressed rats,” Folia Biol., vol. 65, no. 1, pp. 43 - 54, Apr. 2017.
    DOI: 10.3409/fb65_1.43
  15. E. J. Whitworth, O. Kosti, D. Renshaw, J. P. Hinson, “Adrenal neuropeptides: regulation and interaction with ACTH and other adrenal regulators,” Microsc. Res. Tech., vol. 61, no. 3, pp. 259 – 267, Jun. 2003.
    DOI: 10.1002/jemt.10335
    PMid: 12768541
  16. K. Pacak, M. Palkovits, I. J. Kopin, D. S. Goldstein, “Stress-induced norepinephrine release in the hypothalamic paraventricular nucleus and pituitary-adrenocortical and sympathoadrenal activity: in vivo microdialysis studies,” Front. Neuroendocrinol., vol. 16, no. 2, pp. 89 – 150, Apr. 1995.
    DOI: 10.1006/frne.1995.1004
    PMid: 7621982
  17. E. Grazzini et al., “Vasopressin regulates adrenal functions by acting through different vasopressin receptor subtypes,” Adv. Exp. Med. Biol., vol. 449, pp. 325 - 334, 1998.
    DOI: 10.1007/978-1-4615-4871-3_41
    PMid: 10026821
  18. D. García-López et al., “Effects of strength and endurance training on antioxidant enzyme gene expression and activity in middle-aged men,” Scand. J. Med. Sci. Sports, vol. 17, no. 5, pp. 595 - 604, Oct. 2007.
    DOI: 10.1111/j.1600-0838.2006.00620.x
    PMid: 17316373
  19. G. Naert, G. Ixart, L. Tapia-Arancibia, L. Givalois, “Continuous i.c.v. infusion of brain-derived neurotrophic factor modifies hypothalamic-pituitary-adrenal axis activity, locomotor activity and body temperature rhythms in adult male rats,” Neuroscience, vol. 139, no. 2, pp. 779 - 789, May 2006.
    DOI: 10.1016/j.neuroscience.2005.12.028
    PMid: 16457953