Vol. 7, 2022
Radiation Detectors
SILICON BASED P-I-N PHOTODIODE DESIGN WITH USING TCAD SIMULATION
Emre Doganci, Aysegul Kahraman, Demet Erol, Ercan Yilmaz
Pages: 17–21
DOI: 10.37392/RapProc.2022.05
Abstract | References | Full Text (PDF)
The Silicon PIN photodiode (Si-PIN PD) with active area (10.0 x 10.0 mm2, 12.0 x12.0 mm2 and 20.0 x 20.0 mm2) was designed by using Silvaco ATLAS and ATHENA tools at Nuclear Radiation Detectors Applications and Research Center (NÜRDAM). To get Si-PIN PDs’ specifications, capacitance-voltage (C-V) and dark current – voltage (I-V), spectral response measurements were accomplished with Bipolar and Shr model, and Newton method. The dark current and capacitance at -90 V of designed Si-PIN PD are (7.49 nA, 39 pF), (39 nA, 51 pF), (10 nA, 80 pF) for 10x10 mm2, 12x12 mm2, 20x20 mm2 respectively. Si-PIN PDs have low dark current and capacitance at high reverse voltage and all photodiodes reach the full depletion mode at -20 V. Spectral response of each Si-PIN PD is 0.6 AW-1. According to obtained results, designed Si-PIN PDs are likely to be used for medical application after fabrication and radiation test.
- A. B. Rosenfeld, “Electronic dosimetry in radiation therapy,” Radiat. Meas., vol. 41, suppl. 1, pp. S134 – S153, Dec. 2006.
DOI: 10.1016/j.radmeas.2007.01.005 - J. Y. Kim et al., “Effect of a guard-ring on the leakage current in a Si-PIN X-ray detector for a single photon counting sensor,” IEICE Trans. Electron., vol. E91.C, no. 5, pp. 703 – 707, May 2008.
DOI: 10.1093/ietele/e91-c.5.703 - S. H. Voldman, C. N. Perez, A. Watson, “Guard rings: Structures, design methodology, integration, experimental results, and analysis for RF CMOS and RF mixed signal BiCMOS silicon germanium technology,” J. Electrostat., vol. 64, no. 11, pp. 730 – 743, Oct. 2006.
DOI: 10.1016/j.elstat.2006.05.006 - D. Wu et al., “A Research on Thick PIN Detector with High Breakdown Voltage,” ECS Trans., vol. 27, no. 1, pp. 1153 – 1158, Nov. 2010.
DOI: 10.1149/1.3360765 - S. U. Urchuk et al., “Spectral sensitivity characteristics simulation for silicon p-i-n photodiode,” J. Phys.: Conf. Ser., vol. 643, 012068, Nov. 2015.
DOI: 10.1088/1742-6596/643/1/012068 - K. S. Park et al., “Estimates of the Photo-Response Characteristics of a Non-Fully-Depleted Silicon p-i-n Photodiode for the Near Infrared Spectral Range and the Experimental Results,” J. Korean Phys. Soc., vol. 50, no. 4, pp. 1156 – 1162, Apr. 2007.
DOI: 10.3938/jkps.50.1156 - B. Tekcan, “Investigation of photodetectors based on III-nitride and metal oxide thin films deposited by atomic layer deposition,” M.Sc. thesis, Bilkent University, Graduate School of Engineering and Science, Ankara, Turkey, 2015.
Retrieved from: http://repository.bilkent.edu.tr/bitstream/handle/11693/29014/thesis.pdf?sequence=1&isAllowed=y
Retrieved on: Aug. 12, 2021 - C. G. Kang et al., “Correlation between Guard Ring Geometry and Reverse Leakage Current of Si PIN Diode for Radiation Detector,” in Proc. Korean Nuclear Society Autumn Meeting (KNS Autumn Meeting 2017) , Gyeongju, Korea, 2017.
Retrieved from: https://www.kns.org/files/pre_paper/38/17A-175%EA%B0%95%EC%B0%BD%EA%B5%AC.pdf
Retrieved on: Aug. 12, 2021 - O. Koybasi, G. Bolla, D. Bortoletto, “Guard ring simulations for n-on-p silicon particle detectors,” IEEE Trans. Nucl. Sci., vol. 57, no. 5, pp. 2978 – 2986, Oct. 2010.
DOI: 10.1109/TNS.2010.2063439 - F. Rezaei, F. D. Nayeri, A. Rezaeian, “A novel design of a silicon PIN diode for increasing the breakdown voltage,” IET Circuits, Devices Syst., vol. 16, no. 6, pp. 491 – 499, Sep. 2022.
DOI: 10.1049/cds2.12120 - E. Doğanci et al., “Fabrication and characterization of Si-PIN photodiodes,” Turk. J. Phys., vol. 43, no. 6, pp. 556 – 562, Dec. 2019.
DOI: 10.3906/fiz-1905-16