Racheal Chirwa, Alex Mutale, Ercan Yilmaz

Pages: 45–49

DOI: 10.37392/RapProc.2022.11

In this paper, we report the influence of post deposition annealing temperature on structural, morphological, and electrical properties of silicon nanowires (SiNWs) with Y2O3. SiNWs were fabricated by metal assisted chemical etching (MACE) method at room temperature. After the fabrication process, the high-k of Y2 O3 was deposited onto SiNW/n-Si(100) by e-beam evaporation technique. Three samples of Y2O3 with SiNWs were annealed at 200oC, 400oC and 600oC in N2 ambient for 40 min, while one sample was kept as deposited, respectively. The crystalline and morphological properties of Y2O3/SiNWs/n-Si(100) were analyzed by XRD and SEM techniques. On the other hand, the electrical properties of the capacitors based on SiNWs were investigated through C-V measurements at 1MHz. We found that the capacitance value in the accumulation region, dielectric constant(k) and interface states density (Nit) decreased with an increase in the annealing temperature. This could be attributed to the formation of interfacial layer and dangling bonds during high annealing temperature.
  1. A. I. Efimova et al., “Effect of annealing temperature on thermo-diffusional boron doping of silicon nanowire arrays probed by Raman spectroscopy,” J. Raman Spectrosc. , vol. 51, no. 11, pp. 2146 – 2152, Nov. 2020.
    DOI: 10.1002/jrs.5956
  2. R. Nezasa, Y. Kurokawa, N. Usami, “Fabrication of a Si Nanowire MOS Capacitor for the Application to Energy Storage Devices,” in Proc. 2017 Int. Conf. Solid State Devices and Materials (SSDM2017) , Sendai, Japan, 2017, pp. 1009 – 1010.
    DOI: 10.7567/
  3. J. E. Stehr et al., “Effects of growth temperature and thermal annealing on optical quality of GaNAs nanowires emitting in the near-infrared spectral range,” Nanotechnology, vol. 31, no. 6, 065702, Jan. 2020.
    DOI: 10.1088/1361-6528/ab51cd
    PMid: 31658456
  4. H. Saidi et al., “Investigation of the SiNWs concentration and annealing effects on the structural, morphological and optical properties of P3HT: SiNWs nanocomposite,” Adv. Nat. Sci.: Nanosci. Nanotechnol., vol. 11, no. 2, 025011, Jun. 2020.
    DOI: 10.1088/2043-6254/ab9193
  5. A. A. Leonardi, M. J. Lo Faro, A. Irrera, “Silicon nanowires synthesis by metal-assisted chemical etching: A review,” Nanomaterials, vol. 11, no. 2, 383, Feb. 2021.
    DOI: 10.3390/nano11020383
    PMid: 33546133
    PMCid: PMC7913243
  6. M. Rahmani, A. Meftah, “Electrical characterisation of Ag/poly(3-hexylthiophene)/silicon nanowires Schottky diode,” J. Mater. Sci.: Mater. Electron., vol. 31, no. 19, pp. 16352 – 16359, Oct. 2020.
    DOI: 10.1007/s10854-020-04185-x
  7. V. H. Mudavakkat, V. V. Atuchin, V. N. Kruchinin, A. Kayani, C. V. Ramana, “Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films,” Opt. Mater., vol. 34, no. 5, pp. 893 – 900, Mar. 2012.
    DOI: 10.1016/j.optmat.2011.11.027
  8. S. Abubakar, S. Kaya, A. Aktag, E. Yilmaz, “Yttrium oxide nanostructured thin films deposited by radio frequency sputtering: the annealing optimizations and correlations between structural, morphological, optical and electrical properties,” J. Mater. Sci.: Mater. Electron., vol. 28, no. 18, pp. 13920 – 13927, Sep. 2017.
    DOI: 10.1007/s10854-017-7241-7
  9. A. Mutale, S. C. Deevi, E. Yilmaz, “Effect of annealing temperature on the electrical characteristics of Al/Er2O3/n-Si/Al MOS capacitors,” J. Alloys Compd., vol. 863, 158718, May 2021.
    DOI: 10.1016/j.jallcom.2021.158718
  10. M. Naffeti, P. A. Postigo, R. Chtourou, M. A. Zaïbi, “Elucidating the effect of etching time key-parameter toward optically and electrically-active silicon nanowires,” Nanomaterials, vol. 10, no. 3, 404, Feb. 2020.
    DOI: 10.3390/nano10030404
    PMid: 32106503
    PMCid: PMC7152846
  11. A. G. Khairnar, A. M. Mahajan, “Effect of post-deposition annealing temperature on RF-sputtered HfO2 thin film for advanced CMOS technology,” Solid State Sci., vol. 15, pp. 24 – 28, Jan. 2013.
    DOI: 10.1016/j.solidstatesciences.2012.09.010
  12. T. M. Pan, W. T. Chang, F. C. Chiu, “Structural properties and electrical characteristics of high-k Dy2O3 gate dielectrics,” Appl. Surf. Sci., vol. 257, no. 9, pp. 3964 – 3968, Feb. 2011.
    DOI: 10.1016/j.apsusc.2010.11.144
  13. S. K. Chuah, K. Y. Cheong, Z. Lockman, Z. Hassan, “Effect of post-deposition annealing temperature on CeO2 thin film deposited on silicon substrate via RF magnetron sputtering technique,” Mater. Sci. Semicond. Process., vol. 14, no. 2, pp. 101 – 107, Jun. 2011.
    DOI: 10.1016/j.mssp.2011.01.007
  14. R. H. Horng, D. S. Wuu, J. W. Yu, C. Y. Kung, “Effects of rapid thermal process on structural and electrical characteristics of Y2O3 thin films by r.f.-magnetron sputtering,” Thin Solid Films, vol. 289, no. 1 – 2, pp. 234 – 237, Nov. 1996.
    DOI: 10.1016/S0040-6090(96)08907-9
  15. I. Leontis, M. A. Botzakaki, S. N. Georga, A. G. Nassiopoulou, “High capacitance density MIS capacitor using Si nanowires by MACE and ALD alumina dielectric,” J. Appl. Phys., vol. 119, no. 24, 244508, Jun. 2016.
    DOI: 10.1063/1.4954883