Vol. 4, 2019

Table of contents



Aleksandra Nozdracheva, Roman Ushakov, Nadezhda Pleskach, Mirya Kuranova

Pages: 1-6

DOI: 10.37392/RapProc.2019.01

Different programs are used for processing and analyzing of fluorescent images. However, some of these programs produce uncertain results due to their dependence on human factor. Here we made a comparative study of three programs used for fluorescent images analysis: IPLab, Fiji and DARFI. The programs were compared by the fluorescence intensity measurement quality and cell nucleus area detection. We also analyzed the quality of counting of foci in the cell nucleus, the determination of foci area and foci fluorescence intensity. Fluorescent images were obtained with laser microscope Zeiss Axiovert 200M after indirect immunofluorescence. The DNA repair study was performed on three cell lines from patients with ataxia-telangiectasia (AT). This disease is characterized by natural disruptions of the ATM kinase function. The study of the features of ATM kinase in DNA repair in patient cells is relevant not only in AT diagnostic, but also in the estimation of disease severity.
  1. E. Ledesma-Fernández, P. H. Thorpe, “Fluorescent foci quantitation for high-throughput analysis,” J. Biol. Methods, vol. 2, no. 2, Jul. 2015.
    DOI: 10.14440/jbm.2015.62
    PMid: 26290880
    PMCid: PMC4538797
  2. J. M. Shillingford, IPLab Imaging Software for Microscopy from BD Biosciences version 4.0, Biocompare, South San Francisco (CA), USA, 2010.
    Retrieved from: https://www.biocompare.com/Product-Reviews/41450-IPLab-Imaging-Software-For-Microscopy-from-BD-Biosciences/
    Retrieved on: Aug. 22, 2019
  3. J. Schindelin et al., “Fiji: an open-source platform for biological-image analysis,” Nat. Methods, vol. 9, no. 7, pp. 676 - 682, Jun. 2012.
    DOI: 10.1038/nmeth.2019
    PMid: 22743772
    PMCid: PMC3855844
  4. A. Sollazzo et al., “Live Dynamics of 53BP1 Foci Following Simultaneous Induction of Clustered and Dispersed DNA Damage in U2OS Cells,” Int. J. Mol. Sci., vol. 19, no. 2, Feb. 2018.
    DOI: 10.3390/ijms19020519
    PMid: 29419809
    PMCid: PMC5855741
  5. E. Bobkova et al., “Recruitment of 53BP1 Proteins for DNA Repair and Persistence of Repair Clusters Differ for Cell Types as Detected by Single Molecule Localization Microscopy,” Int. J. Mol. Sci., vol. 19, no. 12, Nov. 2018
    DOI: 10.3390/ijms19123713 PMid: 30469529
    PMCid: PMC6321197
  6. T. Ferreira, W. Rasband, ImageJ User Guide – IJ 1.46r, National Institutes of Health, Bethesda (MD), USA, 2012.
    Retrieved from: https://imagej.nih.gov/ij/docs/guide/user-guide.pdf
    Retrieved on: Aug. 22, 2019
  7. M. L. Kuranova, N. M. Pleskach, T. A. Ledashcheva, V. M. Mikhel’son, I. M Spivak, “Mosaic forms of ataxia-telangiectasia,” Tsitologiia, vol. 56, no. 8, pp. 619 - 629, 2014.
    PMid: 25697008
  8. И. В Озеров, “Математическое моделирование процессов индукции и репарации двунитевых разрывов ДНК в клетках млекопитающих при действии редкоионизирующего излучения с различной мощностью дозы,” к. ф.-м.н., МГУ имени М. В. Ломоносова, Радиобиология, Москва, Российской Федерации, 2015. (I.V. Ozerov, “Mathematical modeling of the processes of induction and repair of double-stranded DNA breaks in mammalian cells after the action of rarely ionizing radiation with different dose rates,” Ph.D dissertation, Lomonosov Moscow State University, Dept. of Radiobiology, Moscow, Russia, 2015.)
    Retrieved from: http://www.bio.msu.ru/res/Dissertation/675/DOC_FILENAME/Ozerov_avtoref.pdf
    Retrieved on: Aug. 22, 2019
  9. М. Г. Заднепрянец и др., “Влияние физических характеристик ускоренных тяжёлых ионов на формирование и репарацию двунитевых разрывов ДНК,” Письма в ЭЧАЯ., том. 15, но. 6(218), стр. 563 - 572, 2018. (M. G. Zadnipryanets, “The effect of the physical characteristics of accelerated heavy ions on the formation and repair of double-stranded DNA breaks,” Letters in JINR, vol. 15, no. 6(218), pp. 563 - 572, 2018.)
    Retrieved from: http://www1.jinr.ru/Pepan_letters/panl_2018_6/17_zadnepryan.pdf
    Retrieved on: Aug. 22, 2019


Zygmunt Szefliński, Mateusz Filipek, Jakub Gotlib, Urszula Kaźmierczak

Pages: 7–9

DOI: 10.37392/RapProc.2019.02

The irradiation system consisting of an α-source and disc holder has been developed in the Heavy Ion Laboratory, University of Warsaw. A simple exposure system for irradiation of biological samples consists of the Am-241 disc source, source holder and biological samples cultured in special Petri dishes. The irradiation system has been investigated to determine the alpha spectrum and dose distribution in irradiated single cell layer attached to the Mylar foil. Commercial Am-241 disc source of 50 mm in diameter, with a radioactive element embedded into a substrate layer was examined to established the uniformity of surface radioactivity over the disc source. The experimental device is equipped with cell dishes of 40 mm in diameter and a 6 µm thick Mylar foil bottom. Care was taken for homogenous irradiation of the cells. Dose calibration for the irradiation system was calculated taking into account source-to-target geometry.
  1. M. Durante, “New challenges in high energy particle radiobiology,” Br. J. Radiol., vol. 87, no. 1035, Mar. 2014.
    DOI: 10.1259/bjr.20130626
    PMid: 24198199
    PMCid: PMC4064605
  2. W. K. Weyrather, “Medical applications of accelerated ions,” Lect. Notes Phys., vol. 651, pp. 469 - 490, Aug. 2004.
    DOI: 10.1007/978-3-540-44490-9_12
  3. W. H. Bragg, R. Kleeman, “On the α particles of radium, and their loss of range in passing through various atoms and molecules,” Philos. Mag., vol. 10, no. 57, pp. 318 - 340, Jun. 1905.
    DOI: 10.1080/14786440509463378
  4. N. Ishigure, T. Nakano, H. Enomoto, “A device for in vitro irradiation with alpha-particles using an alpha-emitting radioactive source,” J. Radiat. Res., vol 32, no. 4, pp. 404 - 416, Dec. 1991.
    DOI: 10.1269/jrr.32.404
    PMid: 1817192
  5. J. Szabo et al., “In vitro cell irradiation systems based on 210Po alpha source: construction and characterization,” Radiat. Meas., vol. 35, no. 6, pp. 575 - 578, Dec. 2002.
    DOI: 10.1016/s1350-4487(02)00089-6
    PMid: 12455514
  6. J. F. Ziegler, J. P. Biersack, M. D. Ziegler, “SRIM — The stopping and range of ions in matter,” Nucl. Instrum. Methods Phys. Res., vol. 268, no. 11 - 12, pp. 1818 - 1823, Jun. 2010.
    DOI: 10.1016/j.nimb.2010.02.091
  7. J. F. Ziegler, SRIM, Int. Bus. Mach. Corp., Armonk (NY), USA, 1985.
    Retrieved from: http://www.srim.org
    Retrieved on: May 8, 2019

Radiation Chemistry


M. A. Kiseleva, S. Yu. Sokovnin, M. E. Balezin

Pages: 10–14

DOI: 10.37392/RapProc.2019.03

The principal possibility of the composite particles production by the radiation-chemical method with acceptable productivity was shown. The composite particles were produced in the nanoscale range (50 and 80 nm) from aluminum oxide partially coated with silver. The coating percentage was from 2–3% for smaller particles to 16–40% for larger composite. The stability of the suspension before irradiation using different stabilizers was studied, and the reason for the change in the color of the suspensions after ultrasound treatment was determined. The biological activity of the nanopowder which showed a high level of antibacterial activity was investigated.
  1. R. Salomoni et al., “Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa,” Nanotechnol. Sci. Appl., vol. 10, pp. 115 – 121, Dec. 2017.
    DOI: 10.2147/NSA.S133415
    PMid: 28721025
    PMCid: PMC5499936
  2. Y. Yuan, Q. Peng, S. Gurunathan, “Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment,” Int. J. Nanomedicine, vol. 12, pp. 6487 – 6502, Sep. 2017.
    DOI: 10.2147/IJN.S135482
    PMid: 28919750
    PMCid: PMC5592960
  3. Y. Long et al., “Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli,” Int. J. Nanomedicine, vol. 12, pp. 3193 – 3206, Apr. 2017.
    DOI: 10.2147/IJN.S132327
    PMid: 28458540
    PMCid: PMC5402892
  4. A. Rónavári et al., “Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes,” Int. J. Nanomedicine, vol. 13, pp. 695 – 703, Feb. 2018.
    DOI: 10.2147/IJN.S152010
    PMid: 29440895
    PMCid: PMC5798539
  5. J. Tanori, D. Vargas et al. “Metallic and bimetallic nanoparticles supported on mesoporous materials: photocatalytic and degradation properties” in Book of Abstr. BIT`s 8th Annu. World Congr. Nano Science and Technol. 2018 (Nano S&T-2018), Postdam, Germany, 2018, pp. 112.
    Retrieved from: http://www.bitcongress.com/nano2018/default.asp
    Retrieved on: Nov. 27, 2018
  6. Y. Yang et al., “Safety and efficacy of PLGA(Ag-Fe3O4)-coated dental implants in inhibiting bacteria adherence and osteogenic inducement under a magnetic field, Int. J. Nanomedicine, vol. 13, pp. 3751 – 3762, Jul. 2018.
    DOI: 10.2147/IJN.S159860
    PMid: 29988768
    PMCid: PMC6030938
  7. S. Jin et al., “Electrospun silver ion-loaded calcium phosphate/chitosan antibacterial composite fibrous membranes for guided bone regeneration,” Int. J. Nanomedicine, vol. 13, pp. 4591 - 4605, Aug. 2018.
    DOI: 10.2147/IJN.S167793
    PMid: 30127608
    PMCid: PMC6091484
  8. С. Ю. Соковнин, М. Е. Балезин, “Использование наносекундного электронного пучка для производства серебряного нанопорошка,” Известия высших учебных заведений. Физика, том 59, но. 9-2, стр. 111 – 114, Дек. 2016. (S. Yu. Sokovnin, M. E. Balezin, “Using nanosecond electron beam for silver nanopowder producing,” Russ. Phys. J., vol. 59, no. 9-2, pp. 111- 114, Dec. 2016.)
    Retrieved from: http://elibrary.ru/item.asp?id=28369894
    Retrieved on: Dec. 11, 2018
  9. П. П. Коростелев, Реактивы и растворы в металлургическом анализе,Москва, Россия: Металлургия,1977. (P. P. Korostelev, Reagents and solutions in metallurgical analysis, Moscow, Russia: Metallurgy, 1977.)
    Retrieved from: http://elib.pstu.ru/Record/RUPSTUbooks154349
    Retrieved on: Dec. 23, 2018
  10. О. А. Злыгостева, С. Ю. Соковнин, В. Г. Ильвес, “Применение нанопорошка SiO2 — MnO2 для направленной доставки лекарств,” в Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов, В. М. Самсонова, Н. Ю. Сдобнякова, ур. Тверь, Россия: Твер. гос. ун-т, 2018, стр. 262 – 269. (O. A. Zlygosteva, S. Yu. Sokovnin, V. G. Ilves, “The use of SiO2 — MnO2 nanopowders for targeted drug delivery,” in Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials, V. M. Samsonov, N. Yu. Sdobnyakov, Eds., Tver, Russia: TSU, 2018, pp. 262 – 269.)
    DOI: 10.26456/pcascnn/2018.10.262

Radiation in Medicine


E. Tugce Sarcan, Asuman Tas, Mine Silindir-Gunay, A. Yekta Ozer, Seyda Colak, Baki Hekimoglu

Pages: 15–17

DOI: 10.37392/RapProc.2019.04

X-ray is ionizing radiation used in several areas such as analytical sciences, medicine and security areas. X-ray machines are used in the entrance of important places (airports, shopping centers, etc.) for security purposes. The aim of this study was the investigation of the potential effects of X-ray irradiation on anti-diabetics (metformin HCl, pioglitazone HCl) and proton pump inhibitors (PPI) (lansoprazole, pantoprazole sesquihydrate) pharmaceuticals which are used in chronic diseases by Electron Spin Resonance (ESR). ESR analysis was done before and after different X-ray irradiation doses. Afterwards, ESR spectra and resonance peaks were evaluated. As a result, no significant free radicals were detected by ESR resonance peaks and also, their ESR intensities did not change significantly by increasing X-ray doses.
  1. K. Uehara et al., “Effect of X-ray exposure on the pharmaceutical quality of drug tablets using X-ray inspaction equipment,” Drug Dev. Ind. Pharm., vol. 41, no. 6, pp. 953 – 958, Jun. 2015.
    DOI: 10.3109/03639045.2014.917093
    PMid: 24842380
  2. T. Miyazaki et al., “Estimation of irradiation dose of radiosterilized antibiotics by electron spin resonance: ampicilin,” J. Pharm. Sci., vol. 83, no. 11, pp.1643 – 1644, Nov. 1994.
    DOI: 10.1002/jps.2600831122
    PMid: 7891288
  3. S. Onori et al., “ESR identification of irradiated intibiotics: cephalosporins,” Appl. Radiat. Isot., vol. 47, no. 11 – 12, pp. 1569 – 1572, Nov. – Dec. 1996.
    DOI: 10.1016/S0969-8043(96)00210-2
  4. M. Haupt et al., “Creation and Recombination of Free Radicals in Fluorocarbon Plasma Polymers: An Electron Spin Resonance Study,” Plasma Process. Polym., vol. 5, no. 1, pp. 33 – 43, Jan. 2008.
    DOI: 10.1002/ppap.200700096
  5. I. B. Goldberg, “Improving the analytical accuracy of electron paramagnetic resonance spectroscopy,” J. Magn. Reson., vol. 32, no. 2, pp. 233 – 242, Nov. 1978.
    DOI: 10.1016/0022-2364(78)90207-X
  6. N. P. Crook, S. R. Hoon, K. G. Taylor, C. T. Perry, “Electron spin resonance as a high sensitivity technique for environmental magnetism: determination of contamination in carbonate sediments,” Geophys. J. Int., vol. 149, no. 2, pp. 328 – 337, May 2002.
    DOI: 10.1046/j.1365-246X.2002.01647.x
  7. H. J. M. Slangen, “Determination of the spin concentration by electron spin resonance,” J. Phys. E: Sci. Inst., vol. 3, no. 10, pp. 775 – 778, Oct. 1970.
    DOI: 10.1088/0022-3735/3/10/306
  8. J. Smidt, Bulletin du Groupment Ampere Compte Rendu du 9e Colloque, Pisa, Italy, 1960, pp. 331 – 337.


V.N. Panteleev, A.E. Barzakh, L.Kh. Batist, D.V. Fedorov, V.S. Ivanov, S.A. Molkanov, S.Yu. Orlov, M.D. Seliverstov, Yu.M. Volkov

Pages: 18–22

DOI: 10.37392/RapProc.2019.05

At the National Research Center Kurchatov Institute – Petersburg Nuclear Physics Institute (Gatchina, Russia) a cyclotron C-80 designed to produce protons with the energy of 40–80 MeV and beam intensity of 100 μA (first stage) has been launched. One of the beams of the cyclotron will be used for the treatment of malignant eye tumors. At the same time the main goal of C-80 is the production of a wide range of medical radionuclides for diagnostics and therapy. For this purpose, the construction of the RIC-80 (Radioactive Isotopes on the C-80 cyclotron) complex intended to function on the C-80 beam has been planned. A brief description of the RIC-80 complex is given, and the results of the use of new methods and studies of target devices for the production of radionuclide generator 212Pb/212Bi and 223Ra, 224Ra, 225Ac radioisotopes that undergo alpha-decay are discussed. The suggestions of the mass-separator use in the on-line and semi on-line mode to obtain high isotopic purity radionuclides, which is especially important for medical applications, are discussed. The results of a new high-temperature method use of lutetium radionuclide separation from the ytterbium target material in a high vacuum are presented.
  1. S. A. Artamonov et al., “Design features of the 80 MeV H¯ isochronous cyclotron in Gatchina,” in High Energy Physics Division. Main scientific Activities, G. D. Alkhazov, Eds., 4th ed., Gatchina, Russia: PNPI of NRC “Kurchatov Institute”, 2013, pp. 332 – 338.
    Retrieved from: http://hepd.pnpi.spb.ru/hepd/articles/PNPI_2007-2012.pdf
    Retrieved on: May 15, 2019
  2. V. N. Panteleev et al., “Project of The Radioisotope Facility RIC-80 at PNPI”, in High Energy Physics Division. Main scientific Activities, G. D. Alkhazov, Eds., 4th ed., Gatchina, Russia: PNPI of NRC “Kurchatov Institute”, 2013, pp. 278 – 282.
    Retrieved from: http://hepd.pnpi.spb.ru/hepd/articles/PNPI_2007-2012.pdf
    Retrieved on: May 15, 2019
  3. V. N. Panteleev et al., “The radioisotope complex project "RIC-80" at the Petersburg Nuclear Physics Institute,” Rev. Sci. Instr., vol. 86, no. 12, Dec. 2015.
    DOI: 10.1063/1.4937620
    PMid: 26724030
  4. V. N. Panteleev et al., “Status of the project of radioisotope complex RIC-80 (RadioIsotopes at cyclotron C-80) at PNPI,” Radiat. Appl., vol. 1, no. 2, pp. 95 – 100, 2016.
    DOI: 10.21175/RadJ.2016.02.017
  5. V. N. Panteleev et al., “High temperature ion sources with ion confinement,” ‎Rev. Sci. Instrum., vol. 73, no. 2, pp. 738 – 740, Feb. 2002.
    DOI: 10.1063/1.1427345
  6. V. N. Fedosseev, Yu. Kudryavtsev, V. I. Mishin, “Resonance laser ionization of atoms for nuclear physics,” Phys. Scr., vol. 85, no. 5, Apr. 2012.
    DOI: 10.1088/0031-8949/85/05/058104
  7. M. Dombsky, P. Bricault, “High intensity targets for ISOL, historical and practical perspectives Nucl. Instrum. Methods Phys. Res., vol. 266, no. 19 – 20, pp. 4240 – 4246, Oct. 2008.
    DOI: 10.1016/j.nimb.2008.05.044
  8. V. N. Panteleev et. al., “Studies of uranium carbide targets of a high density,” Nucl. Instrum. Methods Phys. Res., vol. 266, no. 19 – 20, pp. 4247 – 4251, Oct. 2008.
    DOI: 10.1016/j.nimb.2008.05.045
  9. G. J. Beyer, “Radioactive ion beams for biomedical research and nuclear medical application,” Hyperfine Interact., vol. 129, no. 1 – 4, pp. 529 – 553, Dec. 2000.
    Retrieved from: https://www.academia.edu/32087425/Radioactive_ion_beams_for_biomedical_research_and_nuclear_medical_application
    Retrieved on: Feb. 14, 2019
  10. G. J. Beyer, T. J. Ruth, “The role of electromagnetic separators in the production of radiotracers for bio-medical research and nuclear medical application,” Nucl. Instrum. Methods Phys. Res., vol. 204, pp. 694 – 700, May 2003.
    DOI: 10.1016/S0168-583X(03)00489-0
  11. V. N. Panteleev et al., “Production of Cs and Fr isotopes from a high-density UC targets with different grain dimensions,” Eur. Phys. J. A, vol. 42, no. 3, pp. 495 – 501, Dec. 2009.
    DOI: 10.1140/epja/i2009-10841-3
  12. V. N. Panteleev et al., “New Method Development for Medical Radionuclide 223,224Ra, 225Ac Production,” Radiat. Appl., vol. 3, no. 2, pp. 106 – 109, 2018.
    DOI: 10.21175/RadJ.2018.02.017
  13. V. N. Panteleev et al., “A New Method for Production of the Sr-82 Generator Radionuclide and Other Medical Radionuclides,” Tech. Phys., vol. 63, no. 9, pp. 1254 – 1261, Sep. 2018.
    DOI: 10.1134/S1063784218090153
  14. R. Kirchner, “An ion source with bunched beam release,” Nucl. Instrum. Methods Phys. Res., vol. 26, no. 1 – 3, pp. 204 – 212, May 1987.
    DOI: 10.1016/0168-583X(87)90751-8
  15. V. N. Panteleev et al., “Target Development For Medical Radionuclides Cu-67 And Sr-82 Production,” in Proc. 5th Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2017), Budva, Montenegro, 2017, pp. 43 – 47.
    DOI: 10.21175/RadProc.2017.10


А. Tsygankova, V. Каnygin, А. Каsatova, Е. Zavjalov, Т. Guselnikova, А. Kichigin, R. Mukhamadiyarov

Pages: 23–29

DOI: 10.37392/RapProc.2019.06

To accompany boron neutron capture therapy for cancerous tumours, there has been an optimised ICP-AES method for boron determination in animals’ organs tissues. This technique is characterised by its universalism. The approach comprises preliminary acid decomposition at high temperatures and pressure (if necessary), ICP-AES boron determination in the gained solutions analysing comparative samples basing on a single element solution. Its validity is proved by the spike experiment and mass sample variation test. The ICP-AES method is used during the evaluation of BPA and BSH accumulation in organs and tissues when intravenously injecting U87 glioblastoma medication to SCID mice of SPF-status.
  1. R. F. Barth et al., “Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer,” Radiat. Oncol., vol. 7, no. 1, p. 146, Aug. 2012.
    DOI: 10.1186/1748-717X-7-146
    PMid: 22929110
    PMCid: PMC3583064
  2. R. F. Barth, Z. Zhang, T. Liu, “A realistic appraisal of boron neutron capture therapy as a cancer treatment modality,” Cancer Commun., vol. 38, no. 1, p. 36, Jun. 2018.
    DOI: 10.1186/s40880-018-0280-5
    PMid: 29914575
    PMCid: PMC6006699
  3. В. В. Каныгин, А. И. Кичигин, Н. В. Губанова, С. Ю. Таскаев, “Возможности бор-нейтронозахватной терапии в лечении злокачественных опухолей головного мозга,” Вестник рентгенологии и радиологии, но. 6, cтр. 36 - 42, 2015. (V. V. Kanygin, A. I. Kichigin, N. V. Gubanova, S. Y. Taskaev, “Possibilities of boron neutron capture therapy in the treatment of malignant brain tumors,” J. Radiol. Nucl. Med., no. 6, pp. 36 - 42, 2015.)
    DOI: 10.20862/0042-4676-2015-0-6-142-142
  4. S. Y. Taskaev et al., “Opportunities for using an accelerator-based epithermal neutron source for boron neutron capture therapy,” ‎Biomed. Eng., vol. 52, no. 2, pp. 73 - 76, Jul. 2018.
    DOI: 10.1007/s10527-018-9785-0
  5. С. Ю. Таскаев и др., “Перспективы использования ускорительного источника эпитепловых нейтронов для бор-нейтронозахватной терапии,” Медицинская техника, т. 308, но. 2, cтр. 1 - 3, 2018. (S. Y. Taskaev et al., “Prospects for the use of an accelerating source of epithermal neutrons for boron-neutron capture therapy,” Med. Equip., vol. 308, no. 2, pp. 1 - 3, 2018.)
    Retrieved from: https://elibrary.ru/item.asp?id=34878615
    Retrieved on: Aug. 15, 2019
  6. J. A. Coderre, D. D. Joel, P. L. Micca, M. M. Nawrocky, D. N. Slatkin, “Control of intracerebral gliosarcomas in rats by boron neutron capture therapy with p-boronophenylalanine,” Radiat. Res., vol. 129, no. 3, pp. 290 - 296, Mar. 1992.
    DOI: 10.2307/3578028
    PMid: 1542717
  7. J. A. Coderre et al., “Neutron capture therapy of the 9L rat gliosarcoma using the p-boronophenylalanine-fructose complex,” Int. J. Radiat. Oncol. Biol. Phys., vol. 30, no. 3, pp. 643 - 652, Oct. 1994.
    DOI: 10.1016/0360-3016(92)90951-d
    PMid: 7928496
  8. K. Ono, Y. Kinashi, M. Suzuki, M. Takagaki, S. Masunaga, “The combined effect of electroporation and borocaptate in boron neutron capture therapy for murine solid tumors,” Jpn. J. Cancer Res., vol. 91, no .8, pp. 853 - 858, Aug. 2000.
    DOI: 10.1111/j.1349-7006.2000.tb01024.x
    PMid: 10965028
    PMCid: PMC5926423
  9. D. D. Joel, J. A. Coderre, P. L. Micca, M. M. Nawrocky, “Effect of dose and infusion time on the delivery of p-boronophenylalanine for neutron capture therapy,” J. Neurooncol., vol. 41, no. 3, pp. 213 - 221, Feb. 1999.
    DOI: 10.1023/A: 100617690
    PMid: 10359141
  10. A. Deagostino et al., “Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications,” Future Med. Chem., vol. 8, no. 8, pp. 899 - 917, May 2016.
    DOI: 10.4155/fmc-2016-0022
    PMid: 27195428
  11. P. Agüi-Gonzalez, S. Jähne, N. T. N. Phan, “SIMS imaging in neurobiology and cell biology,” J. Anal. At. Spectrom., vol. 34, no. 7, pp. 1355 - 1368, 2019.
    DOI: 10.1039/C9JA00118B
  12. Y. C. Lin et al., “Macro-and microdistributions of boron drug for boron neutron capture therapy in an animal model,” Anticancer Res., vol. 32, no. 7, pp. 2657 - 2664, Jul. 2012.
    PMid: 22753723
  13. P. J. Kueffer et al., “Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes,” Proc. Natl. Acad. Sci. U.S.A., vol. 110, no. 16, pp. 6512 - 6517, Apr. 2013.
    DOI: 10.1073/pnas.1303437110
    PMid: 23536304
    PMCid: PMC3631690
  14. A. Matsumura et al., “A new boronated porphyrin (STA-BX909) for neutron capture therapy: an in vitro survival assay and in vivo tissue uptake study,” Cancer Lett., vol. 141, no. 1 - 2, pp. 203 - 209, Jul. 1999.
    DOI: 10.1016/s0304-3835(99)00105-6
    PMid: 10454263
  15. M. A. Garabalino et al., “Boron biodistribution for BNCT in the hamster cheek pouch oral cancer model: combined administration of BSH and BPA,” Appl. Radiat. Isot., vol. 88, pp. 64 - 68, Jun. 2014.
    DOI: 10.1016/j.apradiso.2013.11.118
    PMid: 24360859
  16. M. Carpano et al., “Experimental Studies of Boronophenylalanine ((10)BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment,” Int. J. Radiat. Oncol. Biol. Phys., vol. 93, no. 2, pp. 344 - 352, Oct. 2015.
    DOI: 10.1016/j.ijrobp.2015.05.039
    PMid: 26232853
  17. R. F. Barth et al., “Evaluation of unnatural cyclic amino acids as boron delivery agents for treatment of melanomas and gliomas,” Appl. Radiat. Isot., vol. 88, pp. 38 - 42, Jun. 2014.
    DOI: 10.1016/j.apradiso.2013.11.133
    PMid: 24393770
    PMCid: PMC4049841
  18. M. A. Dagrosa et al., “Selective uptake of p-borophenylalanine by undifferentiated thyroid carcinoma for boron neutron capture therapy,” Thyroid, vol. 12, no. 1, pp .7 - 12, Jan. 2002.
    DOI: 10.1089/105072502753451904
    PMid: 11838734
  19. A. Doi et al., “Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy,” J. Neurooncol., vol. 87, no. 3, pp. 287 - 294, May 2008.
    DOI: 10.1007/s11060-008-9522-8
    PMid: 18219552
  20. J. Hiratsuka, K. Yoshino, H. Kondoh, Y. Imajo, Y. Mishima, “Biodistribution of boron concentration on melanoma‐bearing hamsters after administration of p‐, m‐, o‐boronophenylalanine,” Jpn. J. Cancer Res., vol. 91, no. 4, pp. 446 - 450, Apr. 2000.
    DOI: 10.1111/j.1349-7006.2000.tb00965.x
    PMid: 10804294
    PMCid: PMC5926464
  21. M. Białek-Pietras, A. B. Olejniczak, S. Tachikawa, H. Nakamura, Z. J. Leśnikowski, “Towards new boron carriers for boron neutron capture therapy: metallacarboranes bearing cobalt, iron and chromium and their cholesterol conjugates,” Bioorg. Med. Chem., vol. 21, no. 5, pp. 1136 - 1142, Mar. 2013.
    DOI: 10.1016/j.bmc.2012.12.039
    PMid: 23357039
  22. J. Laakso et al., “Atomic emission method for total boron in blood during neutron-capture therapy,” Clin. Chem., vol. 47, no. 10, pp. 1796 - 1803, Oct. 2001.
    PMid: 11568089
  23. M. Korkmaz et al., “Estimation of human daily boron exposure in a boron-rich area,” Br. J. Nutr., vol. 98, no. 3, pp. 571 - 575, Sep. 2007.
    DOI: 10.1017/S000711450770911X
    PMid: 17419890
  24. R. Rahil-Khazen, B. J. Bolann, R. J. Ulvik, “Trace element reference values in serum determined by inductively coupled plasma atomic emission spectrometry,” Clin. Chem. Lab. Med., vol. 38, no. 8, pp. 765 - 772, Aug. 2000.
    DOI: 10.1515/CCLM.2000.109
    PMid: 11071071
  25. В. И. Федоров, “К проблеме определения микроэлементов в сыворотке крови человека,” Аналитика и контроль, т. 9, но. 4, cтр. 358 - 366, Mар. 2005. (V. I. Fedorov, “On the problem of determining trace elements in human serum,” Anal. Control, vol. 9, no. 4, pp. 358 - 366, Mar. 2005.)
    Retrieved from: http://elar.urfu.ru/bitstream/10995/58893/1/aik-2005-04-03.pdf
    Retrieved on: Aug. 12, 2019
  26. A. Wittig et al., “Boron analysis and boron imaging in biological materials for Boron Neutron Capture Therapy (BNCT),” Crit. Rev. Oncol. Hematol., vol. 68, no. 1, pp. 66 - 90, Oct. 2008.
    DOI: 10.1016/j.critrevonc.2008.03.004
    PMid: 18439836
  27. S. Evans, U. Krähenbühl, “Boron analysis in biological material: microwave digestion procedure and determination by different methods,” Fresenius` J. Anal. Chem., vol. 349, no. 6, pp. 454- 459. Jun. 1994.
    Retrieved from: https://link.springer.com/article/10.1007/BF00322933
    Retrieved on: Jul. 27, 2019
  28. D. H. Sun, J. K. Waters, T. P. Mawhinney, “Microwave digestion and ultrasonic nebulization for determination of boron in animal tissues by inductively coupled plasma atomic emission spectrometry with internal standardization and addition of mannitol,” J. Anal. At. Spectrom., vol. 12, no. 6, pp. 675 - 679, Jun. 1997.
    Retrieved from: https://www.uvm.edu/cosmolab/boron/boronbyicp.pdf
    Retrieved on: Jun. 11, 2019
  29. T. U. Probst et al., “Comparison of inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry with quantitative neutron capture radiography for the determination of boron in biological samples from cancer therapy,” J. Anal. At. Spectrom., vol. 12, no. 10, pp. 1115 - 1122, Oct. 1997.
    DOI: 10.1039/a700445a
  30. A. S. Al-Ammar, R. K. Gupta, R. Barnes, “Elimination of boron memory effect in inductively coupled plasma-mass spectrometry by ammonia gas injection into spray chamber during analysis,” Spectrochimica Acta Part B: At. Spectrosc., vol. 55, no. 6, pp. 629 - 635, Jun. 2000.
    DOI: 10.1016/S0584-8547(00)00197-X
  31. N. P. Zaksas, T. T. Sultangazieva, T. M. Korda, “Using a two-jet arc plasmatron for determining the trace element composition of powdered biological samples,” J. Anal. Chem., vol. 61, no. 6, pp. 582 - 587, Jun. 2006.
    DOI: 10.1134/S1061934806060128
  32. N. P. Zaksas et al., “Effect of CoCl2 treatment on major and trace elements metabolism and protein concentration in mice,” J. Trace Elem. Med. Biol., vol. 27, no. 1, pp. 27 - 30, Jan. 2013.
    DOI: 10.1016/j.jtemb.2012.07.005
    PMid: 22944586
  33. Ж. Ж. Жеенбаев, В. С. Энгельшт, Двухструйный плазмотрон, Фрунзе, Киргизия: Илим, 1983. (Z. Z. Zheenbaev, V. S. Engelsht, Two-jet plasmatron, Frunze, Kyrgyzstan: Ilim, 1983.
    Retrieved from: https://rusneb.ru/catalog/000199_000009_001177139/
    Retrieved on: Feb. 20, 2019
  34. А. Р. Цыганкова, Г. В. Макашова, И. Р. Шелпакова, “Зависимость интенсивности спектральных линий элементов от мощности ИСП-плазмы и расхода аргона,” Методы и объекты химического анализа, т. 7, но. 3, cтр. 138 - 142, 2012. (A.R. Tsygankova, G. V. Makashova, I. R. Shelpakova, “Dependence of the intensity of the spectral lines of elements on the power of ICP plasma and argon consumption.,” Methods and Objects of Chem. Anal., vol. 7, no. 3, pp. 138 - 142, 2012.)
    Retrieved from: http://www.moca.net.ua/12/3/pdf/07032012_138-142.pdf
    Retrieved on: Nov. 10, 2019
  35. A. Kramida, Y. Ralchenko, J. Reader, Atomic Spectra Database version 5.6.1, NIST, Gaithersburg (MD), US, 2018.
    Retrieved from: https://www.nist.gov/pml/atomic-spectra-database
    Retrieved on: Mar. 13, 2019
  36. А. Н. Зайдель, В. К. Прокофьев, С. М. Райский, Таблицы спектральных линий, Москва, Россия: Издательство Наука, 1969. (A. N. Zaidel, V. K. Prokofiev, S. M. Rayskiy, Tables of spectral lines, Moscow, Russia: Publishing House Science, 1969.)
    Retrieved from: https://buklit.ru/book_133920_tablicy_spektralnyh_linij.html
    Retrieved on: Jan. 19, 2019


R. Mukhamadiyarov, A. Tsygankova, V. Kanygin

Pages: 30–35

DOI: 10.37392/RapProc.2019.07

High effectiveness of Boron Neutron Capture Therapy (BNCT) makes actual the investigation aimed at creating transport systems for the targeted delivery of boron-containing agents. Liposomes are currently among promising boron carriers for BNCT. Existing liposomal technologies allow changing their properties by changing the particle diameter, surface charge, lipid composition, and the presence of vector molecules on the surface of the liposome membrane. The structure of liposomes can include in their composition hydrophobic and lipophilic boron-containing agents at the same time, which increases the content of boron atoms in them. Methods for rapid assessment of dynamic absorption and localization of substances delivered in their composition are required for experiments to improve liposomal drug delivery systems. The method of labeling the lipid membrane of liposomes and their internal contents is a great interest in view of the presence of a large number of various luminescent dyes and highly efficient methods for assessing their intracellular localization (confocal microscopy). By using the method of the rapid freezing of tissues and the preparation of cryosections from them makes it possible to perform an express assessment of the liposomes transport properties for a high volume of samples. The blue region of the spectrum for labeling liposomes did not use in our experiments leaving it for the nuclear dyes (Hoechst 33342, DAPI). Nile red was used for labeling liposomal membranes (excitation/emission maxima ~552/636 nm), PKH-26 (excitation/emission maxima ~551/567 nm), TopFluor PC (excitation/emission maxima ~495/503 nm). High molecular dextran derivatives FITC-Dextran (excitation/emission maxima ~495/520 nm), Rhodamine B isothiocyanate–Dextran (excitation/emission ~570⁄590 nm) were used for labeling internal water core liposomes. The combination of the proposed luminescent labels allows us to determine the localization of the labels of liposomes delivered in the lipid and aqueous phases selectively and makes it possible to extrapolate these data with respect to hydrophilic and lyophilic boron-containing agents. The remaining free region of the spectrum lying in the far-red spectrum allows using it for determining the localization of liposomes in certain organelles, for example, mitochondria (MitoTracker Deep Red for mitochondria, Liso Tracker Deep Red for lysosomes, etc).
  1. H. Nakamura, “Boron lipid-based liposomal boron delivery system for neutron capture therapy: recent development and future perspective,” Future Med. Chem., vol. 5, no. 6, pp. 715 - 730, Apr. 2013.
    DOI: 10.4155/fmc.13.48
    PMid: 23617433
  2. S. J. Baker et al., “Therapeutic potential of boron-containing compounds,” Future Med. Chem., vol. 1, no. 7, pp. 1275 - 1288, Oct. 2009.
    DOI: 10.4155/fmc.09.71
    PMid: 21426103
  3. S. Altieri et al., “Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy,” J. Med. Chem., vol. 52, no. 23, pp. 7829 - 7835, Dec. 2009.
    DOI: 10.1021/jm900763b
    PMid: 19954249
  4. R. F. Barth, P. Mi, W. Yang, “Boron delivery agents for neutron capture therapy of cancer,” Cancer Commun. (Lond.), vol. 38, no. 1, p. 35, Jun. 2018.
    DOI: 10.1186/s40880-018-0299-7
    PMid: 29914561
    PMCid: PMC6006782
  5. E. M. Heber et al., “Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model,” Proc. Natl. Acad. Sci. U S A, vol. 111, no. 45, pp. 16077 - 16081, Nov. 2014.
    DOI: 10.1073/pnas.1410865111
    PMid: 25349432
    PMCid: PMC4234606
  6. C. A. Maitz et al., “Validation and comparison of the therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes in multiple murine tumor models,” Transl. Oncol., vol. 10, no. 4, pp. 686 - 692, Aug. 2017.
    DOI: 10.1016/j.tranon.2017.05.003
    PMid: 28683435
    PMCid: PMC5498409
  7. J. C. Axtell, L. M. A. Saleh, E. A. Qian, A. I. Wixtrom, A. M. Spokoyny, “Synthesis and applications of perfunctionalized boron clusters,” Inorg. Chem., vol. 57, no. 5, pp. 2333 – 2350, Mar. 2018.
    DOI: 10.1021/acs.inorgchem.7b02912
    PMid: 29465227
    PMCid: PMC5985200
  8. G. Y. Wiederschain, The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologie, 11th ed., Therm. Fisher Sci., Waltham (MA), USA, 2010.
    Retrieved from: https://www.thermofisher.com/rs/en/home/references/molecular-probes-the-handbook.html?icid=WE216841
    Retrieved on: Oct. 5, 2019
  9. Y. Fan, Q. Zhang, “Development of liposomal formulations: From concept to clinical investigations,” Asian J. Pharm. Sci., vol. 8, no. 2, pp. 81 – 87, Apr. 2013.
    DOI: 10.1016/j.ajps.2013.07.010
  10. R. V. Thekkedath, “Development of cell-specific and organelle-specific delivery systems by surface modification of lipid-based pharmaceutical nanocarriers,” Ph.D. dissertation, Northeastern University, Boston (MA), USA, 2012.
    Retrieved from: https://pdfs.semanticscholar.org/9f0a/8ff7acf7f80579f5945bbd154c2ac634e63b.pdf?_ga=2.18598460.468378157.1573 917423-1171382453.1572199832
    Retrieved on: Apr. 8, 2019


Hesham MH Zakaly, Mostafa Y. A. Mostafa, M Zhukovsky

Pages: 36–40

DOI: 10.37392/RapProc.2019.08

177Lu and 153Sm are perspective radionuclides used in nuclear medicine. High-energy beta particles and the relative half-life of the radionuclides are used to achieve an effective palliative treatment of bone metastases. In this paper, the effect of the drug carrier EDTMP (i.e. ethylene diamine tetramethylene phosphonate) on the ionic form of 177Lu and 153Sm is presented. The absorbed doses of 177Lu and 153Sm in ionic form labeled with EDTMP in different organs and tissues are determined by IDAC-Dose 2.1 (Internal Dose Assessment by Computer) software and WinAct software which is used to calculate cumulative activity. 177Lu and 153Sm are lanthanide radionuclides which actively accumulate in the liver and bones when used in ionic form. In the case of labeling with EDTMP, the distribution and elimination of the drug occur according to the kinetics of the carrier, EDTMP. The use of an osteotropic complex (drugs attracted to and targeting bones) allows creating a large dose in the pathological areas and minimizes the damage of healthy organs and tissues. 177Lu and 153Sm labeled with EDTMP decrease the liver dose absorption and increase the bone surface absorption for a more effective treatment and minimizing side effects. The effective dose per administered activity is 0.189 mGy/MBq for 177Lu-ionic form, 0.232 mGy/MBq for 153Sm-ionic form and 0.242 mGy/MBq for 177Lu-EDTMP and 0.139 mGy/MBq for 153sm-EDTMP.

  1. S. Chakraborty et al., "177Lu-EDTMP: a viable bone pain palliative in skeletal metastasis," Cancer Biother. Radiopharm., vol. 23, no. 2, pp. 202 – 213, Apr. 2008.
    DOI: 10.1089/cbr.2007.374
    PMid: 18454689
  2. P. Anderson, R. Nuñez, "Samarium lexidronam (153Sm-EDTMP): skeletal radiation for osteoblastic bone metastases and osteosarcoma," Expert Rev. Anticancer Ther., vol. 7, no. 11, pp. 1517 – 1527, Nov. 2007.
    DOI: 10.1586/14737140.7.11.1517
    PMid: 18020921
  3. A. Ahonen et al., "Samarium-153-EDTMP in bone metastases," J. Nucl. Biol. Med., vol. 38, suppl. 1, pp. 123 – 127, Dec. 1994.
    PMid: 7543288
  4. I. G. Finlay, M. D. Mason, M. Shelley, "Radioisotopes for the palliation of metastatic bone cancer: a systematic review," Lancet Oncol., vol. 6, no. 6, pp. 392 – 400, Jun. 2005.
    DOI: 10.1016/S1470-2045(05)70206-0
    PMid: 15925817
  5. S. E. Abram, "Radiopharmaceutical Therapy for Palliation of Bone Pain From Osseous Metastases," in The Year book of anesthesiology and pain management, D. H. Chestnut, Eds., 1st ed., Maryland Heights (MO), USA: Mosby, 2006, pp. 256 – 257.
    DOI: 10.1016/s1073-5437(08)70502-3
  6. T. Das, H. D. Sarma, A. Shinto, K. K. Kamaleshwaran, S. Banerjee, "Formulation, preclinical evaluation, and preliminary clinical investigation of an in-house freeze-dried EDTMP kit suitable for the preparation of 177Lu-EDTMP," Cancer Biother. Radiopharm., vol. 29, no. 10, pp. 412 – 421, Dec. 2004.
    DOI: 10.1089/cbr.2014.1664
    PMid: 25409337
  7. K. F. Eckerman, R. W. Leggett, WinAct version 1.0, ORNL, Oak Ridge (TN), USA, 2002.
    Retrieved from: https://www.ornl.gov/crpk/software
    Retrieved on: Mar. 22, 2019
  8. H. M. H. Zakaly, M. Y. A. Mostafa, M. Zhukovsky, "Dosimetry Assessment of Injected 89Zr-Labeled Monoclonal Antibodies in Humans," Radiat. Res., vol. 191, no. 5, pp. 466 - 474, May 2019.
    DOI: 10.1667/RR15321.1
    PMid: 30896281
  9. M. Y. A. Mostafa, H. M. H. Zakaly, M. Zhukovsky, "Assessment of exposure after injection of 99mTc-labeled intact monoclonal antibodies and their fragments into humans," Radiol. Phys. Technol., vol. 12, no. 1, pp. 96 – 104, Mar. 2019.
    DOI: 10.1007/s12194-018-00496-1
    PMid: 30604358
  10. S. Chakraborty, T. Das, H. D. Sarma, M. Venkatesh, S. Banerjee, "Comparative studies of 177Lu-EDTMP and 177Lu-DOTMP as potential agents for palliative radiotherapy of bone metastasis," Appl. Radiat. Isot., vol. 66, no. 9, pp. 1196 – 1205, Sep. 2008.
    DOI: 10.1016/j.apradiso.2008.02.061
    PMid: 18372188
  11. L. Vigna et al., "Characterization of the [(153)Sm]Sm-EDTMP pharmacokinetics and estimation of radiation absorbed dose on an individual basis," Phys. Med., vol. 27, no. 3, pp. 144 – 152, Jul. 2011.
    DOI: 10.1016/j.ejmp.2010.08.001
    PMid: 20864370
  12. D. M. Taylor, R. W. Leggett, "A generic biokinetic model for predicting the behaviour of the lanthanide elements in the human body," Radiat. Prot. Dosim., vol. 105, no. 1 - 4, pp. 193 – 198, 2003.
    DOI: 10.1093/oxfordjournals.rpd.a006222
    PMid: 14526955
  13. M. Andersson, L. Johansson, K. Eckerman, S. Mattsson, "IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms," EJNMMI Res., vol. 7, no. 88, Nov. 2017.
    DOI: 10.1186/s13550-017-0339-3
    PMid: 29098485
    PMCid: PMC5668221
  14. H. M. H. Zakaly, M. Y. A. Mostafa, M. Zhukovsky, "Radiopharmaceutical dose distribution in different organs and tissues for Lu-177 with different carrier," AIP Conf. Proc., vol. 2174, no. 1, 2019.
    DOI: 10.1063/1.5134421
  15. Education and Training in Radiological Protection for Diagnostic and Interventional Procedures, vol. 39, ICRP Publication no. 113, ICRP, Ottawa, Canada, 2009.
    Retrieved from: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_39_5
    Retrieved on: May 8, 2019

Radiation Measurements


Annesha Karmakar, Anil K. Gourishetty, A. Kelkar

Pages: 41–46

DOI: 10.37392/RapProc.2019.09

The paper discusses the energy response of a single crystal stilbene and two liquid scintillator detectors, BC501 and EJ309 to a range of neutrons and gamma energies generated using a 1.7MV Tandetron accelerator at IIT Kanpur. Stilbene is a solid-state composite organic detector can be used as an alternative choice for combined neutron-gamma detection. Studies have shown that stilbene’s light output response is similar to BC501. Works have also claimed a linear response of stilbene to neutrons for energies less than 5 MeV. In this work, neutrons are generated using the IIT-Kanpur 1.7MV Tandetron using C(Li7,n) reaction. The threshold energy of the reaction and the target thickness are determined by Monte Carlo simulations. Next, we measure the pulse height distribution of various neutron energies incident on stilbene, BC501 and EJ309 of the same dimensions. The response of all the organic crystals of the study to neutrons using the Tandetron is performed on energy spanning the fission neutron energy range to fast neutron energy range. A general-purpose Monte Carlo simulation kit, GEANT4, is used for simulating the reaction and detector response behaviour. Stilbene shows 38% lower energy response than that of EJ309 and BC501 shows 11% lower energy response from EJ309 for the entire neutron spectrum. These responses are consistent as the number density of hydrogen of the same mass of stilbene, BC501 is 38% and 11% lower than EJ309, respectively. GEANT4 simulation allows a detailed analysis of detector response physics for the advancement of detector development for nuclear security applications.
  1. S. T. Paul et al., “Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick 9Be target and estimation of neutron yields,” Rev. Sci. Instrum., vol. 85, no. 6, pp. 4 – 11, Jun. 2014.
    DOI: 10.1063/1.4880202
    PMid: 24985813
  2. What is Neutron Therapy?, Fermilab, Batavia (IL), USA.
    Retrieved from: https://www-bd.fnal.gov/ntf/what_is/index.html
    Retrieved on: May 6, 2019
  3. IBC, 1.7 MV TANDETRON ACCELERATOR FACILITY, Indian Institute of Technology Kanpur, Kanpur, India.
  4. Retrieved from: https://www.iitk.ac.in/ibc/
    Retrieved on: May 7, 2019
  5. D. L. Chichester, Production and Applications of Neutrons using Particle Accelerators, Idaho National Laboratory, Idaho (ID), USA, 2009.
    Retrieved from: https://inldigitallibrary.inl.gov/sites/sti/sti/6302373.pdf
    Retrieved on: May 7, 2019
  6. Geant4 Book For Application Developers, CERN, Geneva, Switzerland.
    Retrieved from: http://cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/ Retrieved on: May 10, 2019
  7. B. H. Kang, S. K. Lee, Y. K. Kim, N. Z. Galunov, G. D. Kim, “Evaluation of a composite stilbene for the fast neutron detection,” in Proc. IEEE Nucl. Sci. Symp. Med. Imaging Conf. (NSS/MIC), Knoxville (TN), USA, 2010.
    DOI: 10.1109/NSSMIC.2010.5873729
  8. CAS DataBase, CAS, Columbus (OH), USA.
    Retrieved from: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB4331036.htm/
    Retrieved on: May 11, 2019
  9. BC-501, BC-501A, BC-519 Liquid Scintillators, Saint Gobain, Courbevoie, France.
    Retrieved from: https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/bc501-501a-519-data-sheet.pdf
    Retrieved on: May 11, 2019
  10. EJ-301, EJ-309, Eljen Technology, Sweetwater (TX), USA.
    Retrieved from: https://eljentechnology.com/products/liquid-scintillators/ej-301-ej-309/
    Retrieved on: May 11, 2019
  11. O. Tarasenko, N. Galunov, N. Karavaeva, I. Lazarev, V. Panikarskaya, “Stilbene composite scintillators as detectors of fast neutrons emitted by a 252Cf source,” Radiat. Meas., vol. 58, pp. 61 – 65, Nov. 2013.
    DOI: 10.1016/j.radmeas.2013.08.005
  12. Geant4 User`s Guide for Application Developers, CERN, Geneva, Switzerland, 2016.
    Retrieved from: https://gentoo.osuosl.org/distfiles/BookForAppliDev-4.10.03.pdf
    Retrieved on: Apr. 10, 2019
  13. J. Iwanowska et al., “Neutron/gamma discrimination properties of composite scintillation detectors,” J. Instrum., vol. 6, Jul. 2011.
    DOI: 10.1088/1748-0221/6/07/P07007
  14. J. Iwanowska et al., “Neutron/gamma discrimination properties of composite scintillation detectors,” J. Instrum., vol. 6, Jul. 2011.
    DOI: 10.1088/1748-0221/6/07/P07007


E. Nazarov, A. Ekidin, A. Vasilyev, M. Pyshkina, M. Vasyanovich

Pages: 47–52

DOI: 10.37392/RapProc.2019.10

The production of electricity by European nuclear power plants with various types of reactor installations in the period from 1995 to 2017 was considered. For each nuclear power plant in Europe, the median specific emission indicators of tritium and carbon-14 (GBq/GWh) were calculated. Depending on these indexes, all stations were divided into 3 types: with the best, stable and the worst emission practices. A conservative estimate of the contribution of various reactor facilities to the activity of tritium and carbon-14 in the atmosphere was made. To assess the activity of tritium and carbon-14 entering the atmosphere as a result of emissions from the research nuclear reactor an experimental stand was developed.
  1. Indicators for Nuclear Power Development, Nuclear Energy Series No. NG-T-4.5, IAEA, Vienna, Austria, 2015, pp. 3 – 4.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1712_web.pdf
    Retrieved on: May 2, 2018
  2. Environmental and Source Monitoring for Purposes of Radiation Protection, Safety Guide No. RS-G-1.8, IAEA, Vienna, Austria, 2005, pp. 5 – 13.
    Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1216_web.pdf
    Retrieved on: May. 2, 2018
  3. A. A. Ekidin, M. H. Zhukovskii, M. E. Vasyanovich, “Identification of the main dose-forming radionuclides in NPP emissions,” Atomic energy, vol. 120, no. 2, pp. 134 – 137, Jun. 2016.
    DOI: 10.1007/s10512-016-0107-x
  4. М. Д. Пышкина, “Определение основных дозообразующих нуклидов в выбросах АЭС PWR и ВВЭР,” Биосферная совместимость: человек, регион, технологии, нo. 2 (18), стр. 98 – 107, 2017. (M. D. Pyshkina, “The determination of main dose-forming nuclides in NPP PWR and VVER releases,” Biosphernaya sovmestimost`: Chelovek, Region, Technologii, no. 2 (18), pp. 98 – 107, 2017.)
    Retrieved from: https://elibrary.ru/download/elibrary_29435089_67 17971.pdf
    Retrieved on: May 2, 2018
  5. Е. И. Назаров, A. A. Eкидин, A. В. Васильев, “Оценка поступления углерода-14 в атмосферу, обусловленного выбросами АЭС,” Известия высших учебных заведений. Физика, тoм 61, нo. 12 – 2, стр. 67 – 73, 2018. (E. I. Nazarov, A. A. Ekidin, A. V. Vasiljev, “Assessment of the atmospheric carbon-14 caused by NPP emissions,” Izvestiya Vuz. Fizika,) vol. 61, no. 12 – 2, pp. 67 – 73, 2018.
    Retrieved from: https://elibrary.ru/item.asp?id=36888653
    Retrieved on: May 2, 2018
  6. Carbon-14 and the environment, Radionuclide Fact Sheet, IRSN, Paris, France, 2010.
    Retrieved from: https://www.irsn.fr/EN/Research/publications-documentation/radionuclides-sheets/environment/Documents/Carbone _UK.pdf
    Retrieved on: Nov. 23, 2017
  7. Investigation of the Environmental Fate of Tritium in the Atmosphere, Rep. INFO-0792, CNSC, Ottawa, Canada, 2009.
    Retrieved from: https://nuclearsafety.gc.ca/pubs_catalogue/uploads/Investigation_of_Environmental_Fate_of_Tritium_in_the_ Atmosphere_INFO-0792_e.pdf
    Retrieved on: Jan. 25, 2019.
  8. Д. Д. Дмитриевич, A. A. Екидин, “Оценка поступления трития в окружающую среду от выбросов АЭС,” Биосферная совместимость: человек, регион, технологии, нo. 1 (21), стр. 88 – 96, 2018. (D. D. Desyatov, A. A. Ekidin, “Evaluation of tritium`s entry into the environment from nuclear power plants` emissions,” Biosphernaya sovmestimost`: Chelovek, Region, Technologii, no. 1 (21), pp. 88 – 96, 2018.)
    Retrieved from: https://elibrary.ru/download/elibrary_34959688_70998513.pdf
    Retrieved on: Mar. 2, 2019
  9. A. A. Екидин, К. Л. Антонов, М. В. Жуковский,
    “Оценка загрязнения атмосферы тритием при испарении воды с поверхности промышленных водоёмов,” Вопросы радиационной безопасности, нo. 3 (67), стр. 3 – 10, 2012. (A.A. Ekidin, K. L. Antonov, M. V. Zhukovskii, “Assessment of tritium air pollution due to water evaporation from the surface of industrial reservoirs,” Voprosy Radiatsionnoy Bezopasnosti, no. 3 (67), pp. 3 – 10, 2012.)
    Retrieved from: https://elibrary.ru/item.asp?id=18037186
    Retrieved on: Mar. 12, 2019
  10. A. A. Екидин и др., “Оценка поступления трития в атмосферу из брызгальных бассейнов балаковской АЭС в холодный период,” Ядерная и радиационная безопасность, нo. 3 (85), стр. 35 – 46, 2017. (A. A. Ekidin et al., “Assessment of Tritium Escape into Atmosphere from the Spray Ponds of the Balakovo NPP in Cold Seasons,” Yadernaya i Radiatsionnaya Bezopasnost`, no. 3 (85), pp. 35 – 46, 2017.)
    Retrieved from: https://elibrary.ru/download/elibrary_30297016_17720315.pdf
    Retrieved on: Mar. 2, 2019
  11. А. Г. Цикунов, В. В. Алексеев, С. В. Забродская, К. В. Тыклеева, “Источники образования трития в реакторах типа БН,” Вопросы атомной науки и техники. Серия: ядерно-реакторные константы, нo. 1, стр. 74 – 78, 2015. (A. G. Tsikunov, V. V. Alekseev, S. V. Zabrodskaya, K. V. Tykleeva, “Sources of tritium production in bn-type reactors,” Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yaderno-Reaktornyye Konstanty, no. 1, pp. 74 – 78, 2015.)
    Retrieved from: https://vant.ippe.ru/images/pdf/2015/1-9.pdf
    Retrieved on: Mar. 2, 2019
  12. X. Hou, “Tritium and 14C in the Environment and Nuclear Facilities: Sources and Analytical Methods,” J. Nucl. Fuel Cycle Waste Technol., vol. 16, no. 1, pp. 11 – 39, Mar. 2018.
    DOI: 10.7733/jnfcwt.2018.16.1.11
  13. Radioactive Discharges Database, European Commission, Brussels, Belgium, 2016.
    Retrieved from: http://europa.eu/radd/nuclideDischargeOverview.dox?pageID=NuclideDischargeOverview
    Retrieved on: Jan. 5, 2018
  14. Power Reactor Information System, IAEA, Vienna, Austria.
    Retrieved from: https://pris.iaea.org/PRIS/home.aspx
    Retrieved on: Jan. 5, 2018
  15. S. S. Shapiro, M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika, vol. 52, no 3/4. pp. 591 – 611, Dec. 1965.
    Retrieved from: http://www.bios.unc.edu/~mhudgens/bios/662/2008fall/Backup/wilkshapiro1965.pdf
    Retrieved on: Mar. 10, 2019
  16. Encyclopedia of Mathematics: Kolmogorov-Smirnov test, The European Mathematical Society, Helsinki, Finland, 2012.
    Retrieved from: https://www.encyclopediaofmath.org/index.php/Kolmogorov-Smirnov_test
    Retrieved on: Mar. 10, 2019
  17. Encyclopedia of Mathematics: Spearman coefficient of rank correlation, The European Mathematical Society, Helsinki, Finland, 2012.
    Retrieved from: https://www.encyclopediaofmath.org/index.php/Spearman_coefficient_of_rank_correlation
    Retrieved on: Mar. 10, 2019
  18. M. Vasyanovich et al., “Special monitoring results for determination of radionuclide composition of Russian NPP atmospheric releases,” Nucl. Eng. Technol., vol. 51, no. 4, pp. 1176 – 1179, Jul. 2019.
    DOI: 10.1016/j.net.2019.02.010
  19. И. М. Русских, “Исследовательский реактор ИВВ-2М”, Атомная энергия, тoм 121, нo. 4, стр. 183 – 186, 2016.(I. M. Russkikh, “Research Reactor IVV-2M,” Atomnaya Energiya, vol. 121, no. 4, pp. 183 – 186, 2016.)
    Retrieved from: https://elibrary.ru/item.asp?id=27201105
    Retrieved on: Apr. 10, 2019
  20. И. В. Прозорова, “Влияние отравления бериллиевых блоков на нейтронно-физические характеристики реактора ИВГ.1М,” Известия томского политехнического университета. Инжиниринг георесурсов, тoм. 326, нo. 2, стр. 148 – 155, 2015. (I. V. Prozorova, “The effect of poisoning of beryllium blocks on the neutron-physical characteristics of the IVG.1M reactor,” Izvestiya Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov, vol. 326, no. 2, pp. 148 – 155, 2015.)
    Retrieved from: http://www.lib.tpu.ru/fulltext/v/Bulletin_TPU/2015/v326/i2/15.pdf
    Retrieved on: Apr. 11, 2019
  21. С. Б. Злоказов и др., “Методические и инженерные подходы к производству изотопов на реакторе ИВВ-2М”, Атомная энергия, тoм 121, нo. 4, стр. 227 – 232, Oкт. 2016. (S. B. Zlokazov et al., “Methodological and engineering approaches to the production of isotopes at the IVV-2M reactor,” Atomnaya Energiya, vol. 121, no. 4, pp. 227 – 232, Oct. 2016.)
    Retrieved from: https://j-atomicenergy.ru/index.php/ae/article/view/461
    Retrieved on: Apr. 11, 2019


C. Brenan, S. Landsberger

Pages: 53–56

DOI: 10.37392/RapProc.2019.11

An assessment of the trace elemental content in industrial diamonds was performed using thermal and epithermal neutron activation analysis (NAA). For NAA, the elements determined were Mn and Si (short-lived radionuclides) Co, Cr, Fe, Ni (long-lived radionuclides) using normal and Compton suppression counting modes. Quality control was achieved using a NIST standard reference material.
  1. Y. Weiss, W. L. Griffin, S. Elhlou, O. Navon, “Comparison between LA-ICP-MS and EPMA analysis of trace elements in diamonds,” Chem. Geol., vol. 252, no. 3 – 4, pp. 158 – 168, Jul. 2008.
    DOI: 10.1016/j.chemgeo.2008.02.008
  2. J. McNeill et al., “Quantitative analysis of trace element concentrations in some gem-quality diamonds,” J. Phys. Condens. Matter, vol. 21, no. 36, Sep. 2009.
    DOI: 10.1088/0953-8984/21/36/364207
    PMid: 21832313
  3. D. M. Bibby, “Zonal distribution of impurities in diamond,” Geochim. Cosmochim. Acta, vol. 43, no. 3, pp 415 – 423, Mar. 1979.
    DOI: 10.1016/0016-7037(79)90206-0
  4. D. M. Bibby, “Impurities in natural diamond,” Chem. Phys. Carbon, vol. 18, pp. 1 – 91, 1982.
    Retrieved from: https://ci.nii.ac.jp/naid/80001518268/
    Retrieved on: Sep. 3, 2019
  5. H. W. Fesq, D. M. Bibby, J. P. F. Sellschop, J. I. W. Watterson, “The determination of trace-element impurities in natural diamonds by instrumental neutron activation analysis,” J. Radioanal. Chem., vol. 17, no. 1 – 2, pp. 195 – 216, Mar. 1973.
    DOI: 10.1007/BF02520785
  6. A. Damarupurshad, R. J. Hart, J. P. F. Sellschop, H. O. Meyer, “The application of INAA to the geochemical analysis of single diamonds,” J. Radioanal. Nucl. Chem., vol. 219, no. 1, pp. 33 – 39, May 1997.
    DOI: 10.1007/BF02040261
  7. J. J. Fardy, Y. J. Farrar, “Trace-element analysis of argyle diamonds using instrumental neutron activation analysis,” J. Radioanal. Nucl. Chem., vol. 164, no. 5, pp. 337 – 345, Mar. 1992.
    DOI: 10.1007/BF02164957
  8. E. M. Smith et al., “Blue boron-bearing diamonds from Earth’s lower mantle,” Nature, vol. 560, pp. 84 – 87, Aug. 2018.
    DOI: 10.1038/s41586-018-0334-5
  9. E. Gaillou, J. E. Post, D. Rost, J. E. Butler, “Boron in natural type IIb blue diamonds: Chemical and spectroscopic measurements,” Am. Mineral., vol 97, no. 1, pp. 1 – 18, Jan. 2012.
    DOI: 10.2138/am.2012.3925
  10. J. M. King, et al., “Characterizing natural-color type IIb blue diamonds,” Gems Gemol., vol. 34, no. 4, pp. 246 – 268, Dec. 1998.
    DOI: 10.5741/GEMS.34.4.246
  11. S. Landsberger, J. Yellin, “Minimizing sample sizes while achieving accurate elemental concentrations in neutron activation analysis of precious pottery,” J. Archaeol. Sci.,vol. 20, pp. 622 – 625, Aug. 2018.
    DOI: 10.1016/j.jasrep.2018.05.029
  12. M. B. Stokley, S. Landsberger, “A non-destructive analytical technique for low level detection of praseodymium using epithermal neutron activation analysis and compton suppression gamma-ray spectroscopy,” J. Radioanal. Nucl. Chem., vol. 318, no. 1, pp. 369 – 373, Oct. 2018.
    DOI: 10.1007/s10967-018-6071-2
  13. S. Landsberger, J. Yellin, “Minimizing sample sizes while achieving accurate elemental concentrations in neutron activation analysis of precious pottery,” J. Archaeol. Sci.,vol. 20, pp. 622 – 625, Aug. 2018.
    DOI: 10.1016/j.jasrep.2018.05.029
  14. I. K. Baidoo et al., “Determination of aluminium, silicon and magnesium in geological matrices by delayed neutron activation analysis based on k0 instrumental neutron activation analysis,” Appl. Rad. Isot., vol. 82, pp. 152 – 157, Dec. 2013.
    DOI: 10.1016/j.apradiso.2013.07.032
    PMid: 23999324
  15. J. Kučera, R. Zeisler, “Low-level determination of silicon in biological materials using radiochemical neutron activation analysis,” J. Radioanal. Nucl. Chem., vol. 263, no. 3, pp 811 – 816, Feb. 2005.
    DOI: 10.1007/s10967-005-0663-3
  16. S. Yusuf, “Improving the detection limit of silicon, magnesium and aluminum in neutron activation analysis of polymers using a TRIGA® reactor,” J Radioanal. Nucl. Chem., vol. 282, pp. 99 – 104, Oct. 2009.
    DOI: 10.1007/s10967-009-0212-6
  17. S. Landsberger, S. Peshev, D. A. Becker, “Determination of silicon in biological and botanical reference materials by epithermal INAA and Compton suppression,” Nucl. Instrum. Methods Phys. Res., vol. 353, no. 1 – 3, pp. 601 – 605, Dec. 1994.
    DOI: 10.1016/0168-9002(94)91732-9
  18. S. Landsberger, D. Wu, “Improvement of analytical sensitivities for the determination of antimony, arsenic, cadmium, indium, iodine, molybdenum, silicon and uranium in airborne particulate matter by epithermal neutron activation analysis,” J. Radioanal. Nucl. Chem., vol. 167, no. 2, pp. 219 – 225, Jan. 1993.
    DOI: 10.1007/BF02037181
  19. B. Canion, S. Landsberger, “Determining trace amounts of nickel in plant samples by neutron activation analysis,” J. Radioanal. Nucl. Chem., vol. 296, no. 1, pp. 315 – 317, Apr. 2013.
    DOI: 10.1007/s10967-012-2070-x
  20. S. Landsberger, W. D. Cizek, R. H. Campbell, “NADA92: An automated, user-friendly program for neutron activation data analysis, J. Radioanal. Nucl. Chem., vol. 180, no. 1, pp. 55 – 63, May 1994.
    DOI: 10.1007/BF02039903
  21. Gamma-ray Spectrometry Catalog, Idaho National Laboratory, Idaho (ID), USA.
    Retrieved from: https://gammaray.inl.gov/SitePages/Home.aspx
    Retrieved on: Sep. 29, 2019
  22. L. A. Currie, “Limits for qualitative detection and quantitative determination. Application to radiochemistry,” Anal. Chem., vol. 40, no. 3, pp. 586 – 593, Mar. 1968.
    DOI: 10.1021/ac60259a007

Radiation Protection


Dhahir Mohammed Dhahir, Azhar Salman Ali, Ali Abid Abojassim, Hayder H. Hussain

Pages: 57–60

DOI: 10.37392/RapProc.2019.12

In this paper twenty tea samples that are available in Najaf markets were tested for their radioactivity contents using gamma-ray spectroscopic measurements NaI(Tl) "3× 3". The specific activity of 238U, 232Th and 40K from tea samples ranged from 2.87±1.75 to 22.03±1.95 Bq/kg, 5.80±3.45 to 64.74±5.12 Bq/kg and 630.00±13.08 to 1354.67±25.82 Bq/kg respectively. Hazard indices were also calculated to assess the radiation hazard. All calculated values for hazard indices were less than unity.
  1. J. E. Turner, Atoms, Radiation and Radiation Protection, 2nd ed., Weinheim, Germany: Wiley-VCH, 1995.
    Retrieved from: https://ui.adsabs.harvard.edu/abs/1995arrp.book.....T/abstract
    Retrieved on: May 15, 2019
  2. D. Desideri, M. A. Meli, C. Roselli, L. Feduzi, “Alpha and gamma spectrometry for determination of natural and artificial radionuclides in tea, herbal tea and camomile marketed in Italy,” Microchem. J., vol. 98, no. 1, pp. 170 – 175, May 2011.
    DOI: 10.1016/j.microc.2011.01.005
  3. M. S. Al-Masri et al., “Transfer of (40)K, (238)U, (210)Pb, and (210)Po from soil to plant in various locations in south of Syria,” J. Environ. Radioact., vol. 99, no. 2, pp. 322 – 331, Feb. 2008.
    DOI: 10.1016/j.jenvrad.2007.08.021
    PMid: 17920734
  4. S. L. Simon, S. A. Ibrahim, “The plant/soil concentration ratio for calcium, radium, lead, and polonium: Evidence for non-linearity with reference to substrate concentration,” J. Environ. Radioact., vol. 5, no.2, pp. 123 – 142, 1987.
    DOI: 10.1016/0265-931X(87)90028-2
  5. B. L. Tracy, F. A. Prantl, J. M. Quinn, “Transfer of 226Ra, 210Pb and uranium from soil to garden produce: assessment of risk,” Health Phys., vol. 44, no. 5, pp. 469 – 477, May 1983.
    DOI: 10.1097/00004032-198305000-00001
    PMid: 6853169
  6. A. C. Paul, K. C. Pillai, “Transfer and uptake of radium in a natural and in a technologically modified radiation environment,J. Environ. Radioact., vol. 3, no. 1, pp. 55 – 73, Dec. 1986.
    DOI: 10.1016/0265-931X(86)90049-4
  7. V. A. Pulhani, S. Dafauti, A. G. Hegde, R. M. Sharma, U. C. Mishra, “Uptake and distribution of natural radioactivity in wheat plants from soil,” J. Environ. Radioact., vol. 79, no. 3, pp. 331 – 346, Feb. 2005.
    DOI: 10.1016/j.jenvrad.2004.08.007
    PMid: 15607519
  8. J. C. Veselsky, “The isotopic composition of uranium in soils and plants from the environment of Seibersdorf, Lower Austria,” Radiochem, Radioanal. Lett., vol. 30, pp. 193 – 198, 1977.
  9. K. Bunzl, M. Trautmannsheimer, “Transfer of 238U, 226Ra and 210Pb from slag-contaminated soils to vegetables under field conditions,” Sci. Total Environ., vol. 231, no. 2 – 3, pp. 91 – 99, Jul. 1999.
    DOI: 10.1016/S0048-9697(99)00020-0
  10. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environment, Technical Reports Series no. 364, IAEA, Vienna, Austria, 1994.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/25/063/25063861.pdf
    Retrieved on: Aug. 21, 2019
  11. H. Noordijk, K. E. van Bergeijk, J. Lembrechts, M. J. Frissel, “Impact of ageing and weather conditions on soil-to-plant transfer of radiocesium and radiostrontium,” J. Environ. Radioact., vol. 15, no. 3, pp. 277 – 286, 1992.
    DOI: 10.1016/0265-931X(92)90063-Y
  12. P. Linsalata, “Uranium and thorium decay series radionuclides in human and animal foodchains - a review,” J. Environ. Qual., vol. 23, no. 4, pp. 633 – 642, Jul. 1994.
    DOI: 10.2134/jeq1994.00472425002300040003x
  13. N. Karunakara et al., “Soil to rice transfer factors for (226)Ra, (228)Ra, (210)Pb, (40)K and (137)Cs: a study on rice grown in India,” J. Environ.Radioact., vol. 118, pp. 80 – 92, Apr. 2013.
    DOI: 10.1016/j.jenvrad.2012.11.002
    PMid: 23266913
  14. Y. Ağuş, “Determination of the Radioactivity in the Turkish Tea Samples,” Karaelmas J. Sci. Eng., vol. 7, no. 1, pp. 68 – 73, 2017.
    Retrieved from: http://fbd.beun.edu.tr/index.php/zkufbd/article/download/523/286
    Retrieved on: Jun. 22, 2019
  15. S. Topcuoğlu, N. Güngör, A. Köse, A. Varinlioğlu, “Translocation and depuration of 137Cs in tea plants,” J. Radioanal. Nucl. Chem., vol. 218, no. 2, pp. 263 – 266, Apr. 1997.
    DOI: 10.1007/BF02039348
  16. V. A. Becegato, F. J. F. Ferreira, W. C. P. Machado, “Concentration of radioactive elements (U, Th and K) derived from phosphatic fertilizers in cultivated soils,” Braz. Arch. Biol. Technol., vol. 51, no. 6, pp. 1255 – 1266, Nov. – Dec. 2008.
    DOI: 10.1590/S1516-89132008000600022
  17. O. Baykara, M. Dogru, “Determination of terrestrial gamma, 238U, 232Th and 40K in soil along fracture zones,” Radiat. Meas., vol. 44, no. 1, pp. 116 – 121, Jan. 2009.
    DOI: 10.1016/j.radmeas.2008.10.001
  18. B. Oktay, K. Sule, D. Mahmut, “Assessments of natural radioactivity and radiological hazards in construction materials used in Elazig, Turkey,” Radiat. Meas., vol. 46, no. 1, pp. 153 – 158, Jan. 2011.
    DOI: 10.1016/j.radmeas.2010.08.010
  19. I. C. Okeyode, A. M. Oluseye, “Studies of the Terrestrial outdoor Gamma Dose Rate Levels in Ogun-Osun River Basins Development Authority Headquarters, Abeokuta, Nigeria,” Phys. Int., vol. 6, no. 1, pp. 1 – 8, 2010.
    Retrieved from: http://s3.amazonaws.com/zanran_storage/www.scipub.org/ContentPages/137399400.pdf
    Retrieved on: Apr. 12, 2019
  20. Sources and Effects of Ionizing Radiation, Rep. A/55/46, UNSCEAR, New York (NY), USA, 2000.
    Retrieved from: https://www.unscear.org/unscear/publications.html
    Retrieved on: Jun. 1, 2019


Lilian Letícia Nieri Madi, Gian-Maria Agostino Angelo Sordi, Edmir Netto de Araújo

Pages: 61–66

DOI: 10.37392/RapProc.2019.13

Much has already been seen in the world regarding the damage that may result from an accident in nuclear power plants. In the event of an accident that causes effective damage, either to the environment or to the population, both the Brazilian and foreign standards predict liability for remedying. The Brazilian Federal Constitution of 1988 determines the competence of the Union to operate nuclear services and installations, being State monopoly activities related to nuclear material and its derivatives. Besides that, FC/88 attributed liability stricto sensu for nuclear damage. The Vienna Convention on Civil Liability for nuclear damage, dated May 21, 1993, which was promulgated in Brazil by Decree No. 911/1993, provides that the operator is responsible for nuclear damages, in the case of Brazil, the operator is the State entity (Federal Autarchy) responsible for the operation. Thus, in cases of nuclear damage, the State should be held liable objectively. And here issues begin to arise such as: Is the State always responsible? Is there any possibility of exclusion of the State’s liability? This paper aims to analyze the constitutional text and the infra-constitutional rules in an attempt to answer these and other questions without, however, intending to exhaust the subject.
  1. E. N. de Araújo, Curso de direito administrativo, 8a ed., São Paulo, Brasil: Saraiva Educação, 2018. (E. N. de Araújo, Administrative law course., 8th ed., Sao Paulo, Brazil: Saraiva Education, 2018).
  2. Y. S. Cahali, Responsabilidade civil do Estado, 4a ed., São Paulo, Brasil: Revista dos Tribunais, 2012. (Y. S. Cahali, State’s civil liability, 4th ed., Sao Paulo, Brazil: Journal of the Courts, 2012).
  3. C. A. Bittar, Responsabilidade civil nas atividades nucleares, São Paulo, Brasil: Revista dos Tribunais, 1985. (C. A. Bittar, Civil liability in nuclear activities, Sao Paulo, Brazil: Journal of the Courts, 1985.)
  4. F. Tartuce, “Responsabilidade civil,” em Manual de Direito Civil: volume único, 9a ed., São Paulo, Brasil: Método, 2019, cap. 4, seç., págs. 393 – 470. (F. Tartuce, “Civil responsibility,” in Civil Law Manual: single volume, 9th ed., Sao Paulo, Brazil: Method, 2019, ch. 4, sec., pp. 393 – 470.)
    Retrieved from: https://www.academia.edu/31961479/Manual_de_Direito_Civil_Volume_Unico_Flavio_Tartuce
    Retrieved on: Apr. 10, 2019
  5. Presidência da República. (10.1.2010). Lei nº 10.406 Institui o Código Civil art. 945. (Presidency of the Republic. (Jan. 10, 2010). Law no. 10.406 Institutes the Civil Code art. 945.)
    Retrieved from: http://www.planalto.gov.br/ccivil_03/leis/2002/l10406.htm?fbclid=IwAR1nFCh-8euJD9h0ZNKoTazsM-UaDzFmgitZ4JMgcrepl7Q4CZLFpmy9rO4
    Retrieved on: Apr. 10, 2019
  6. N. Hungria, Comentários ao Código Penal, vol. 1, Tom. 2, 3a ed., Rio de Janeiro, Brasil: Revista Forense, 1955, Arts. 11 a 27. (N. Hungria, Comments on the Penal Code, vol. 1, Tom. 2, 3rd ed., Rio de Janeiro, Brazil: Forense Magazine, 1955, Arts. 11 to 27.)
  7. Presidência da República. (05.10.1988). Constituição da República Federativa do Brasil de 1988. (Presidency of the Republic. (Oct. 5, 1988). Constitution of the Federative Republic of Brazil, 1988.)
    Retrieved from: http://www.planalto.gov.br/ccivil_03/constituicao/constituicao.htm
    Retrieved on: Mar. 22, 2019
  8. Presidência da República. (10.1.2002). Lei nº 10.406 Institui o Código Civil. (Presidency of the Republic. (Jan. 10, 2002). Law no. 10.406 Establishes the Civil Code.)
    Retrieved from: http://www.planalto.gov.br/ccivil_03/leis/2002/l10406.htm
    Retrieved on: Apr. 13, 2019
  9. H. L. Meirelles, “Responsabilidade civil da administração,” em Direito Administrativo Brasileiro, 42a ed., São Paulo, Brasil: Malheiros, 2016, cap. 10, seç. 1, p. 779 – 792. (H. L. Meirelles, “Civil liability of the administration,” in Brazilian Administrative Law, 42nd ed., Sao Paulo, Brazil: Malheiros, 2016, ch. 10, sec.1, p. 779 – 792.)
    Retrieved from: https://libgen.is/book/index.php?md5=4055D00327A90FF80D397AD18960E99F
    Retrieved on: Apr. 13, 2019
  10. E. Freitas, “Teorias do Risco,” Jusbrasil, 03.11.2015. (E. Freitas, “Risk theories,” Jusbrasil, Nov. 3, 2015.)
    Retrieved from: https://eleniltonfreitas.jusbrasil.com.br/artigos/250885109/teorias-do-risco
    Retrieved on: Mar. 15, 2019
  11. Superior Tribunal de Justiça. (18.3.2015). no 30 Direito Ambiental. (Superior Justice Tribunal. (Mar. 18, 2015). no. 30 Environmental Law.)
    Retrieved from: http://www.stj.jus.br/internet_docs/jurisprudencia/jurisprudenciaemteses/Jurisprud%C3%AAncia%20em%20teses% 2030%20-%20direito%20ambiental.pdf
    Retrieved on: May 22, 2019
  12. P. F. I. Lemos, Direito ambiental: responsabilidade civil e proteção ao meio ambiente, 3a ed., São Paulo, Brasil: Revista dos Tribunais, 2010. (P. F. I. Lemos, Environmental law: civil liability and protection of the environment, 3rd ed., Sao Paulo, Brazil: Journal of the Courts, 2010.)
  13. É. Milaré, “Responsabilidade civil ambiental,” em Direito do ambiente, 11ª ed., São Paulo, Brasil: Thomson Reuters, 2018, cap. 2, seç. 4.2, pp. 430 – 522. (É. Milaré, “Environmental liability,” in Environmental law, 11th ed., Sao Paulo, Brazil: Thomson Reuters, 2018, ch. 2, sec. 4.2, pp. 430 – 522.)
    Retrieved from: http://www.mpsp.mp.br/portal/page/portal/documentacao_e_divulgacao/doc_biblioteca/bibli_servicos_produtos/bibli _boletim/2019_Boletim/Bol05_04.pdf
    Retrieved on: Apr. 13, 2019
  14. J. L. G. de Almeida, Temas atuais de responsabilidade civil, São Paulo, Brasil: Atlas, 2007. (J. L. G. de Almeida, Current issues of civil liability, José Luiz Gavião de Almeida, Sao Paulo, Brazil: Atlas, 2007.)
    Retrieved from: https://repositorio.usp.br/item/002194592
    Retrieved on: Mar. 22, 2019
  15. Presidência da República. (28.3.1977). Decreto nº 79.437 Promulga a Convenção Internacional sobre Responsabilidade Civil em Danos Causados por Poluição por óleo, 1969. (Presidency of the Republic. (Mar. 28, 1977). Decree no. 79.437 Promulgates the International Convention on Civil Liability for Oil Pollution Damage, 1969.)
    Retrieved from: http://www.planalto.gov.br/ccivil_03/decreto/1970-1979/D79437.htm
    Retrieved on: Apr. 13, 2019
  16. Presidência da República. (31.8.1981). Lei nº 6.938 Dispõe sobre a Política Nacional do Meio Ambiente, seus fins e mecanismos de formulação e aplicação, e dá outras providências. (Presidency of the Republic. (Aug. 31, 1981). Law no. 6,938 Provides for the National Environmental Policy, its purposes and mechanisms of formulation and application, and other measures.)
    Retrieved from: http://www.planalto.gov.br/ccivil_03/leis/l6938.htm
    Retrieved on: Apr. 13, 2019
  17. S. L. Henkes, “A Responsabilidade Civil no Direito Ambiental Brasileiro,Revista de Direito Sanitário, v. 10, n. 1, págs. 51 – 70, Mar./Jul. 2009. (S. L. Henkes, “The Civil Responsibility in the Brazilian Environmental Law,” Health Law J., vol. 10, no. 1, pp. 51 – 70, Mar./Jul. 2009.)
    DOI: 10.11606/issn.2316-9044.v10i1p51-70
  18. C. R. Gonçalves, Direito Civil Brasileiro: responsabilidade Civil, vol. 4, 10a ed., São Paulo, Brasil: Saraiva, 2015. (C. R. Gonçalves, Brazilian Civil Law: Civil Liability. vol. 4, 1oth ed., Sao Paulo, Brazil: Saraiva, 2015.)
  19. S. S. Venosa, Direito Civil: obrigações e responsabilidade civil, vol. 2, 17a ed., São Paulo, Brasil: Atlas, 2017. (S. S. Venosa, Civil Law: obligations and civil liability, vol. 2, 17th ed., Sao Paulo, Brazil: Atlas, 2017.)
    Retrieved from:
    Retrieved on: Apr. 13, 2019
  20. Presidência da República. (07.10.1980). Decreto-Lei nº 1.809 Institui o Sistema de Proteção ao Programa Nuclear Brasileiro, e dá outras providências (Revogado pela Lei nº 12.731, de 2012). (Presidency of the Republic. (Oct. 7, 1980). Decree-Law no. 1,809 Establishes the System of Protection to the Brazilian Nuclear Program, and other measures [Repealed by Law no. 12,731 of 2012]).
    Retrieved from: http://www.planalto.gov.br/ccivil_03/Decreto-Lei/1965-1988/Del1809.htm
    Retrieved on: Apr. 13, 2019
  21. A. Tostes, Sistema de legislação ambiental, Petrópolis, Brasil: Vozes/CECIP, 1994. (A.Tostes, System of environmental legislation, Petropolis, Brazil: Voices/CECIP, 1994.)
  22. C. A. P. Fiorillo, Curso de Direito Ambiental Brasileiro, 19a ed., São Paulo, Brasil: Saraiva Educação, 2019. (C. A. P. Fiorillo, Brazilian Environmental Law Course, 19th ed., Sao Paulo, Brazil: Saraiva Education, 2019.)
  23. Presidência da República. (17.10.1977). Lei nº 6.453 Dispõe sobre a responsabilidade civil por danos nucleares e a responsabilidade criminal por atos relacionados com atividades nucleares e dá outras providências. (Presidency of the Republic. (Oct. 17, 1977). Law no. 6,453 Provides for civil liability for nuclear damage and criminal liability for acts related to nuclear activities and other measures.)
    Retrieved from: http://www.planalto.gov.br/ccivil_03/Leis/L6453.htm
    Retrieved on: Mar. 22, 2019
  24. Presidência da República. (03.9.1993). Decreto nº 911 Promulga a Convenção de Viena sobre Responsabilidade Civil por Danos Nucleares, de 21/05/1963. (Presidency of the Republic. (Sep. 3, 1993). Decree no. 911 Promulgates the Vienna Convention on Civil Liability for Nuclear Damage of May 21, 1963.)
    Retrieved from: http://www.planalto.gov.br/ccivil_03/decreto/1990-1994/D0911.htm
    Retrieved on: Mar. 22, 2019


M. Wrzesień, L. Królicki, Ł. Albiniak, J. Olszewski

Pages: 67–71

DOI: 10.37392/RapProc.2019.14

Changing the individual dose limit for the lens of the eye from a value of 150 mSv per year to a level of 20 mSv (averaged over defined periods of five years or 50 mSv in a single year) means that issues related to routine eye lens dosimetry become interesting from the point of view of radiation protection. This could mean that the dosimeter designed to measure the doses at the level of the eye lens may become the next dosimeter routinely worn by nuclear medicine workers occupationally exposed to ionising radiation. The dosimeters currently used in nuclear medicine are the personal dosimeter and the ring dosimeter. Will this also be the case for nuclear medicine employees? In this interdisciplinary branch of medicine, the factors that cause the highest risk of radiation exposure of personnel are the process of manual handling, i.e. the process of preparing a radiopharmaceutical called labelling. Most of the radiopharmaceuticals used in nuclear medicine are labelled manually. In Poland, the exception from this rule is when radiopharmaceuticals are produced for the needs of positron emission tomography (PET), which are labelled using automatic processes. Manual procedures also include the process of radiopharmaceutical injection to the patients. The aim of the work was to assess the exposure of eye lenses of workers in nuclear medicine, as well as of the personnel in centers that produce radiopharmaceuticals for PET diagnostics, from the viewpoint of advisability of routine eye lens exposure monitoring, taking into account changes in the dose limit for the lens of the eye. Methods: The results of own measurements of the personal dose equivalent Hp(3), carried out in five nuclear medicine departments in Poland, as well as in two centers producing radiopharmaceuticals for PET, were subject to analysis. The analysis includes two most frequently used radionuclides for diagnostic purposes, namely 99mTc, 18F and the less frequently used 68Ga, in addition to 131I, which is used for therapeutic purposes. Dosimetric measurements were made using thermoluminescent detectors of domestic manufacture. Results & Conclusions: Estimated analysis of the annual exposure makes it possible to indicate cases where the maximum annual value of personal dose equivalent, in terms of Hp(3), exceeds threefold the new limit value specified at 20 mSv/year.
  1. ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context, vol. 41, ICRP Publication no. 118, ICRP, Ottawa, Canada, 2012.
    DOI: 10.1016/j.icrp.2012.02.001
    PMid: 22925378
  2. The 2007 Recommendations of the International Commission on Radiological Protection, vol. 37, ICRP Publication no. 103, ICRP, Ottawa, Canada, 2007.
    Retrieved from: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_37_2-4
    Retrieved on: Apr. 20. 2019
  3. Implications for Occupational Radiation Protection of the New Dose Limit for the Lens of the Eye, TECDOC No. 1731, IAEA, Vienna, Austria, 2013.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1731_web.pdf
    Retrieved on: May 12, 2019
  4. J. Dabin et al., “Eye lens doses in nuclear medicine: a multicentric study in Belgium and Poland,” Radiat. Prot. Dosim., vol. 170, no. 1 – 4, pp. 297 – 301, Sep. 2016.
    DOI: 10.1093/rpd/ncv538
    PMid: 26822424
  5. S. Leide-Svegborn, “External radiation exposure of personnel in nuclear medicine from 18F, 99mTc and 131I with special reference to fingers, eyes and thyroid,” Radiat. Prot. Dosim., vol. 149, no. 2, pp. 196 – 206, Apr. 2012.
    DOI: 10.1093/rpd/ncr213
    PMid: 21571739
  6. Materiały i sprzęt ochronny przed promieniowaniem X i gamma -- Obliczanie osłon stałych, PN-86/J-80001, Czerwiec 10, 1986. (Materials and equipment protection against X-rays and gamma rays. Calculation the thickness of shields used against ionizing radiation, PN-86/J-80001, Jun. 10, 1986.)
    Retrieved from: http://www.narzedziownie.pl/?t=k&i=202&n=21274
    Retrieved on: Jan. 18, 2019
  7. K. A. Pachocki, A. Sackiewicz-Słaby, “Determining the current status and potential of nuclear medicine in Poland,” Rocz. Państw. Zakł. Hig., vol. 64, no. 3, pp. 243 – 250, 2013.
    Retrieved from: http://wydawnictwa.pzh.gov.pl/roczniki_pzh/download-article?id=992
    Retrieved on: Aug. 22, 2019
  8. Stan zdrowia ludnoœci polski w 2004 r., Główny urząd statystyczny, Warszawa, Polska, 2006. (The health status of the Polish population in 2004, Central Statistical Office, Warsaw, Poland, 2006.)
    Retrieved from: https://stat.gov.pl/cps/rde/xbcr/gus/stan_zdrowia_2004.pdf
    Retrieved on: Aug. 28, 2019
  9. X and gamma reference radiations for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy, part 1,ISO Report 4037–1, ISO, Geneva, Switzerland, 1997.
  10. X and gamma reference radiation for calibrating dosemeters and doserate meters and determining their response as a function of photon energy, part 3, ISO Report 4037–3, ISO, Geneva, Switzerland, 1999.
    Retrieved from: https://www.sis.se/api/document/preview/615127/
    Retrieved on: May 15, 2019
  11. F. Vanhavere et al., “Measurements of eye lens doses in interventional radiology and cardiology: Final results of the ORAMED project,” Radiat. Meas., vol. 46, no. 11, pp. 1243 – 1247, Nov. 2011.
    DOI: 10.1016/j.radmeas.2011.08.013
  12. F. Vanhavere et al., ORAMED: Optimization of radiation protection of medical staff, Rep. 2012-02, EURADOS, Braunschweig, Germany, 2012.
    Retrieved from: https://eurados.sckcen.be/-/media/Files/Eurados/documents/EURADOS_Report_201202.pdf?la=en&hash=06DAE419D9DE47 619319719264086015D1D9143E
    Retrieved on: Sep. 4, 2019
  13. M. Wrzesień, “18F-FDG production procedures as a source of eye lens exposure to radiation,” J. Radiol. Prot., vol. 38, no. 1, pp. 382 – 393, Feb. 2018.
    DOI: 10.1088/1361-6498/aaa287
    PMid: 29447122
  14. M. Wrzesień, L. Królicki, Ł. Albiniak, J. Olszewski, “Is eye lens dosimetry needed in nuclear medicine?,” J. Radiol. Prot., vol. 38, no. 2, pp. 763 – 774, Jun. 2018.
    DOI: 10.1088/1361-6498/aabef5
    PMid: 29667600
  15. M. Wrzesień, Ł. Albiniak, “68Ga-DOTA-TATE—a source of eye lens exposure for nuclear medicine department workers,” J. Radiol. Prot., vol. 38, no. 4, pp. 1512 – 1523, Dec. 2018.
    DOI: 10.1088/1361-6498/aaea8e
    PMid: 30468680
  16. The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM. Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
    Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF
    Retrieved on: Jul. 21, 2019


Jose Rafael Parga, Sheldon Landsberger

Pages: 72–77

DOI: 10.37392/RapProc.2019.15

The vast majority of radiation protection guidelines in nuclear facilities usually relate from one to a few sources of radiation in very controlled environments. Currently, there are 111 research reactors where neutron activation analysis (NAA) is a major research and teaching component. In particular, NAA can yield a wide variety of exposures due to different types of samples and neutron fluxes. Unlike any other type of radiation laboratories, an NAA facility can contain a large variety of radioactive isotopes as a result of activation products with varying degrees of half-lives and with different intensities of gamma-rays and beta particles. Using MCNP 6.2, a Monte Carlo code developed by Los Alamos National Laboratory (LANL) for radiation transport, dose rates were computed. The computational results were validated by irradiating several National Institute of Standards and Technology (NIST) standard reference materials. The samples were allowed to decay during their transfer from the reactor to the NAA laboratory. These computational doses were validated to the experimental doses. Using this information, a database will be developed for accurately predicting the expected doses to researchers working at research reactors and develop better radiation protection standards at NAA facilities.
  1. Research Reactor Database, IAEA, Vienna, Austria, 2019.
    Retrieved from: https://nucleus.iaea.org/RRDB/Content/Util/NAA.aspx
    Retrieved on: Jun. 17, 2019
  2. H. Cember, T. E. Johnson, “Interaction of Radiation with Matter,” in Introduction to Health Physics, 4th ed., New York (NY), USA: McGraw-Hill, 2009, ch. 5, pp. 192 – 193.
    Retrieved from:
    Retrieved on: Aug. 12, 2019
  3. Sampling and Analytical Methodologies for Instrumental Neutron Activation Analysis of Airborne Particulate Matter, Training Course Series No. 4, IAEA, Vienna, Austria, 1992.
    Retrieved from: https://www.iaea.org/publications/346/sampling-and-analytical-methodologies-for-instrumental-neutron-activation-analysis-of-airborne-particulate-matter
    Retrieved on: Aug. 12, 2019
  4. Occupational Radiation Protection, Safety Standards Series No. GSG-7, IAEA, Vienna, Austria, 2018.
    Retrieved from: https://www.iaea.org/publications/11113/occupational-radiation-protection
    Retrieved on: Aug. 12, 2019
  5. Safety of Research Reactors, Safety Standards Series No. SSR-3, IAEA, Vienna, Austria, 2016.
    Retrieved from: https://www.iaea.org/publications/11031/safety-of-research-reactors
    Retrieved on: Aug. 12, 2019
  6. C. J. Werner et al., MCNP6.2 Release Notes, Los Alamos National Laboratory, Los Alamos (NM), USA, 2018.
    Retrieved from: https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-18-20808.pdf
    Retrieved on: Jul. 15, 2019
  7. W. Charlton, “NETL TRIGA Input Deck,” Unpublished.
  8. M. L. Fensin, J. S. Hendricks, G. W. McKinney, “Monte Carlo Burnup Interactive Tutorial,” presented at the ANS 2009 Student Meeting, Gainesville (FL), USA, Apr. 2009.
    Retrieved from: https://mcnp.lanl.gov/pdf_files/la-ur-09-2051.pdf
    Retrieved on: Apr. 12, 2019
  9. Peach Leaves, SRM 1547, Apr. 2, 2019.
    Retrieved from: https://www-s.nist.gov/srmors/certificates/1547.pdf
    Retrieved on: Apr. 12, 2019
  10. Trace Elements in Coal, SRM 1632D, Oct. 14, 2014.
    Retrieved from: https://www-s.nist.gov/srmors/certificates/1632d.pdf
    Retrieved on: Apr. 12, 2019
  11. Trace Elements in Coal Fly Ash, SRM 1633C, Jun. 23, 2011.
    Retrieved from: https://www-s.nist.gov/srmors/certificates/1633C.pdf
    Retrieved on: Apr. 12, 2019
  12. Montana I Soil, SRM 2710A, Nov. 2, 2018.
    Retrieved from: https://www-s.nist.gov/srmors/certificates/2710a.pdf
    Retrieved on: Apr. 12, 2019
  13. J. L. Conlin, Listing of Available ACE Data Tables: Formerly Appendix G of the MCNP Manual, Los Alamos National Laboratory, Los Alamos (NM), USA, 2017.
    Retrieved from: https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-17-20709.pdf
    Retrieved on: Jul. 15, 2019
  14. S. Landsberger, A. Sharp, S. Wang, Y. Pontikes, A. H. Tkaczyk, “Characterization of bauxite residue (red mud) for 235U, 238U, 232Th and 40K using neutron activation analysis and the radiation dose levels as modeled by MCNP,” J. Environ. Radioact., vol. 173, pp. 97 – 101, Jul. 2017.
    DOI: 10.1016/j.jenvrad.2016.12.008
    PMid: 28049554
  15. S. Wang, S. Landsberger, “MCNP modeling of NORM dosimetry in the oil and gas Industry,” J. Radioanal. Nucl. Chem., vol. 309, no. 1, pp. 367 – 371, Jul. 2016.
    DOI: 10.1007/s10967-016-4781-x
  16. PIMAL: Phantom with Moving Arms and Legs, Nuclear Regulatory Commission, Oak Ridge (TN), USA, 2017.
    Retrieved from: https://ramp.nrc-gateway.gov/PIMAL
    Retrieved on: Apr. 12, 2019
  17. G. F. Knoll, Radiation Detection and Measurement, 3rd ed., Hoboken (NJ), USA: John Wiley & Sons, Inc., 2000.
    Retrieved from: https://libgen.is/book/index.php?md5=51A49204DB42FB158A457EADB9FB7239
    Retrieved on: Jun. 19, 2019


E. H. Ghanim, A. Salman, S. Harb

Pages: 78–82

DOI: 10.37392/RapProc.2019.16

In the present work, the specific activity concentrations of natural radionuclides of 238U and 232Th chain members, as well as 40K were measured in phosphate samples using a gamma-ray spectrometric technique based on high-resolution hyper-pure germanium detectors (HPGe). Samples were collected from the El-Sebaiya area at the Aswan zone, Egypt. The external hazard index(Hex), the external absorbed dose rates(D), the annual effective doses (E) and the excess lifetime cancer risk (ELCR) due to gamma radiation from these samples have been calculated and compared with the corresponding average worldwide values. The evaluations of the associated radiological hazards from these materials on the workers during mining processes in the El-Sebaiya area were carried out.
  1. R. I. Obed, I. P. Farai, N. N. Jibiri, “Population dose distribution due to soil radioactivity concentration levels in 18 cities across Nigeria,” J. Radiol. Prot., vol. 25, no. 3, pp. 305 – 312, Sep. 2005.
    DOI: 10.1088/0952-4746/25/3/007
    PMid: 16286693
  2. A. Rani, S. Singh, “Natural radioactivity levels in soil samples from some areas of Himachal Pradesh, India using γ-ray spectrometry,” Atmospheric Environ., vol. 39, no. 34, pp. 6306 – 6314, Nov. 2005.
    DOI: 10.1016/j.atmosenv.2005.07.050
  3. H. Orabi, A. Al-Shareaif, M. El-Galefi, “Gamma-ray measurements of naturally occurring radioactive sample from Alkharje City,” J. Radioanal. Nucl. Chem., vol. 269, no. 1, pp. 99 – 102, Jul. 2006.
    DOI: 10.1007/s10967-006-0237-z
  4. Sources and Effects of Ionizing Radiation, Rep. A/55/46, UNSCEAR, New York (NY), USA, 2000.
    Retrieved from: https://www.unscear.org/unscear/publications.html
    Retrieved on: Feb. 12, 2019
  5. L. Oosterhuis, “Radiological aspects of the non-nuclear industry in the Netherlands,” Radiat. Prot. Dosim., vol. 45, no. 1 – 4, pp. 703 – 705, Dec. 1992.
    DOI: 10.1093/rpd/45.1-4.703
  6. P. Becker, Phosphates and phosphoric acid: raw materials, technology, and economics of the wet process, New York (NY), USA: M. Decker, 1983.
    Retrieved from: https://libgen.is/book/index.php?md5=4967F430B4E5602346CD8848E61BCB2A
    Retrieved on: Feb. 27, 2019
  7. A. El-Gabar M. El-Arabi, I. H. Khalifa, “Application of multivariate statistical analyses in the interpretation of geochemical behaviour of uranium in phosphatic rocks in the Red Sea, Nile Valley and Western Desert, Egypt,” J. Environ. Radioact., vol. 61, no. 2, pp. 169 – 190, Dec. 2002.
    DOI: 10.1016/s0265-931x(01)00124-2
    PMid: 12066979
  8. A. G. E. Abbady, M. A. M. Uosif, A. El-Taher, “Natural radioactivity and dose assessment for phosphate rocks from Wadi El-Mashash and El-Mahamid Mines, Egypt,” J. Environ. Radioact., vol. 84, no. 1, pp. 65 – 78, 2005.
    DOI: 10.1016/j.jenvrad.2005.04.003
    PMid: 15951069
  9. S. El-Sharkawy, M. S. El-Tahawy, W. F. Bakr, A. Salman, “The activity concentrations of 226Ra, 232Th and 40K for the building materials in Sohag Region, Egypt,” J. Nucl. Radiat. Phys., vol. 10, no. 1 - 2, pp. 23 – 37, 2015.
    Retrieved from: http://www.afaqscientific.com/jnrp/v10n003.pdf
    Retrieved on: Jun. 5, 2019
  10. K. A. Allam, Z. Ahmed, S. El-Sharkawy, A. Salman, “Analysis and statistical treatment of 238U series isotopic ratios using gamma-ray spectrometry in phosphate samples,” Radiat. Prot. Environ., vol. 40, no. 3, pp. 110 – 115, Jan. 2017.
    DOI: 10.4103/rpe.RPE_30_17
  11. A. Salman, Z. Ahmed, K. A. Allam, S. El‑Sharkawy, “A comparative study for 235U radioactivity concentration calculation methods in phosphate samples,” Radiat. Prot. Environ., vol. 42, no. 1, pp. 5 – 9, Jan. 2019.
    DOI: 10.4103/rpe.RPE_77_18
  12. Sources and Effects of Ionizing Radiation, Rep. A/63/46, UNSCEAR, New York (NY), USA, 2008.
    Retrieved from: https://www.unscear.org/unscear/publications.html
    Retrieved on: Feb. 10, 2019
  13. J. Beretka, P. J. Matthew, “Natural radioactivity of Australian building materials, industrial wastes and by-products,” Health Phys., vol. 48, no. 1, pp. 87 – 95, Jan. 1985.
    DOI: 10.1097/00004032-198501000-00007
    PMid: 3967976
  14. K. A. Allam, “A methodology for evaluation of absorbed gamma dose-rate factors for radionuclides distribution in soil,” Radiat. Prot. Environ., vol. 39, no. 4, pp. 177 – 182, Jan. 2016.
    DOI: 10.4103/0972-0464.199975
  15. A. A. Qureshi et al., “Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan,” J. Radiat. Res. Appl. Sci., vol. 7, no. 4, pp. 438 – 447, Oct. 2014.
    DOI: 10.1016/j.jrras.2014.07.008
  16. The 2007 Recommendations of the International Commission on Radiological Protection, vol. 37, ICRP Publication no. 103, ICRP, Ottawa, Canada, 2007.
    Retrieved from: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_37_2-4
    Retrieved on: Apr. 10, 2019
  17. M. T. Kaleel, M. J. Mohammad, “Natural radioactivity levels and estimation of radiation exposure in environmental soil samples from Tulkarem province-Palestine,” Open J. Soil Sci., vol. 2, no. 1, pp. 7 – 16, Mar. 2012.
    DOI: 10.4236/ojss.2012.21002
  18. M. Rafique et al., “Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley,” J. Radiat. Res. Appl. Sci., vol. 7, no. 1, pp. 29 – 35, Jan. 2014.
    DOI: 10.1016/j.jrras.2013.11.005
  19. 1990 Recommendations of the International Commission on Radiological Protection, vol. 21, ICRP Publication no. 60, ICRP, Ottawa, Canada, 1991.
    Retrieved from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%2060
    Retrieved on: Oct. 11, 2019


Danko Živković, Nevenka M. Antović

Pages: 83–89

DOI: 10.37392/RapProc.2019.17

There is an interest in evaluating and predicting risks due to existing radiation exposure situations, such as radon inhalation or exposure to external terrestrial radiation, both indoors and outdoors – as the greatest contributors to annual effective dose coming from natural radiation sources. That is particularly related to radon exposure and an evaluation of its role in initiating lung cancer, although risk projections have serious limitations being affected by the other important agents contributing to the cancer risk. Cancer risk due to radon inhalation and terrestrial gamma radiation in Podgorica, the capital of Montenegro, is considered here together with available epidemiological data, showing that among different types of cancer diagnosed in Montenegro, lung cancer is among the most common ones. The previous analysis indicated that the lung cancer incidence rate increases from year to year, 6% annually in the period from 1978 to 2005, with an average standardized incidence rate of 20.8 per hundred thousand. The incidence rate of lung cancer in Podgorica in 2009 evaluated in the present study was found to be around 34.9. Diagnosed cancer types were non-small cell lung cancer in 37%, small cell lung cancer 22%, adenocarcinoma 17%, and mixed – adeno- and non-small cell 24%. Excess lifetime cancer risk due to terrestrial gamma radiation outdoors in the urban area of Podgorica (14 locations) is estimated to be in the range (10-3) from 0.17 to 0.69, with an average of 0.33, while the risk of lung cancer due to lifetime radon inhalation (153 homes in the region of the Podgorica municipality) – from 0.04 to 8.8%, with an average of 0.8% and median of 0.4%.
  1. Ionizing radiation, part 1: X- and gamma (γ)-radiation, and neutrons, vol. 75, IARC monographs on the evaluation of carcinogenic risks to humans, IARC, Lyon, France, 2000.
    Retrieved from: https://monographs.iarc.fr/wp-content/uploads/2018/06/mono75.pdf
    Retrieved on: Aug. 02, 2018
  2. Radiation – A review of human carcinogens, vol. 100 D, IARC monographs on the evaluation of carcinogenic risks to humans, IARC, Lyon, France, 2012.
    Retrieved from: https://monographs.iarc.fr/wp-content/uploads/2018/06/mono100D.pdf
    Retrieved on: Aug. 02, 2018
  3. 1990 Recommendations of the International Commission on Radiological Protection, vol. 21, ICRP Publication no. 60, ICRP, Ottawa, Canada, 1991.
    Retrieved from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%2060
    Retrieved on: Aug. 02, 2018
  4. The 2007 Recommendations of the International Commission on Radiological Protection, vol. 37, ICRP Publication no. 103, ICRP, Ottawa, Canada, 2007.
    Retrieved from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%20103
    Retrieved on: Aug. 02, 2018
  5. Sources and Effects of Ionizing Radiation, Annex B, Rep. A/55/46, UNSCEAR, New York (NY), USA, 2000.
    Retrieved from: https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Annex-B.pdf
    Retrieved on: Nov. 14, 2009
  6. Effects of ionizing radiation, Annex E, Rep. A/61/46 + Corr, UNSCEAR, New York (NY), USA, 2009.
    Retrieved from: https://www.unscear.org/docs/publications/2006/UNSCEAR_2006_Annex-E-CORR.pdf
    Retrieved on: Jul. 19, 2013
  7. D. Živković, “Efekat izgubljenog vremena na preživljavanje bolesnika sa karcinomom pluća,” Doktorska disertacija, Univerzitet u Beogradu, Medicinski fakultet, Beograd, Srbija, 2009. (D. Živković, “Effect of delays on surviving patients with lung carcinoma,” Ph.D. dissertation, University of Belgrade, Faculty of Medicine, Belgrade, Serbia, 2009.)
    Retrieved from: https://plus.cg.cobiss.net/opac7/bib/35934479
    Retrieved on: Jul. 19, 2013
  8. Ministarstvo zdravlja Crne Gore. (Jul 2011). Nacionalni program za kontrolu raka. (Ministry of Health of Montenegro. (Jul. 2011). National programme for cancer control.)
    Retrieved from: http://www.mzdravlja.gov.me/ResourceManager/FileDownload.aspx?rid=217336&rType=2&file=NACIONALNI%20 PROGRAM%20ZA%20KONTROLU%20RAKA%20SA%20PLANOM%20AKTIVNOSTI%202011-2015.pdf
    Retrieved on: Aug. 19, 2019
  9. Statistical Yearbook of Montenegro 2018, Statistical Office of Montenegro – MONSTAT, Podgorica, Montenegro, 2018.
    Retrieved from: hhttp://monstat.org/userfiles/file/publikacije/godisnjak%202018/GODISNJAK%202018%20PRELOM.pdf
    Retrieved on: Aug. 26, 2019
  10. P. Vukotic et al., “Indoor radon concentrations in the capital of Montenegro,” Bull. The Montenegrin Academy of Sciences and Arts, no. 17, pp. 85 – 95, 2007.
  11. P. Vukotic et al., “Radon survey in Montenegro – A base to set national radon reference and “urgent action” level,” J. Environ. Radioact., vol. 196, pp. 232 – 239, Jan. 2019.
    DOI: 10.1016/j.jenvrad.2018.02.009
    PMid: 29501265
  12. P. Vukotic et al., “Main findings from radon indoor survey in Montenegro,” Radiat. Prot. Dosim., 2019.
    DOI: 10.1093/rpd/ncz022
    PMid: 30839085
  13. P. Vukotić i dr., “Istraživanje radona u stanovima u Crnoj Gori,” u Zborniku 29. Simp. Društva za zaštitu od zračenja Srbije i Crne Gore, Srebrno jezero, Srbija, 2017, str. 161 – 166. (P. Vukotić et al., “Radon indoor survey in Montenegro,” in Proc. 29th Symp. Radiat. Prot. Soc. Ser. Monten., Srebrno jezero, Serbia, 2017, pp. 161 – 166.)
    Retrieved from: https://mail.ipb.ac.rs/~centar3/radovi171020/2017_CN03-04_Zbornik_XXIX_Simpozijum_DZZ_SCG_2017.pdf
    Retrieved on: Jan. 15, 2019
  14. P. Vukotić i dr., “Procjena procenta stanova u Crnoj Gori sa koncentracijama radona iznad datog nivoa,” u Zborniku 11. Simp. Hrvatskog društva za zaštitu od zračenja, Osijek, Hrvatska, 2017, str. 356 – 361. (P. Vukotic et al., “Estimation of a percentage of dwellings in Montenegro with radon concentrations above a given level,” in Proc. 11th Symp. Croat. Radiat. Prot. Assoc., Osijek, Croatia, 2017, pp. 356 – 361.)
    Retrieved from: https://www.hdzz.hr/wp-content/uploads/2017/04/11HDZZ_zbornik.pdf
    Retrieved on: Feb. 4, 2019
  15. I. Antović, N. Svrkota, D. Živković, N. M. Antović, “A cancer risk due to natural radiation on the Coast of Montenegro,”in Proc. 14th Int. Cong. Int. Rad. Prot. Assoc. (IRPA), Cape Town, South Africa, 2016, pp. 1470 – 1477.
  16. N. M. Аntović et al., “Radioactivity impact assessment of Nikšić region in Montenegro,” J. Rаdioаnаl. Nucl. Chem., vol. 302, no. 2, pp. 831 – 836, Nov. 2014.
    DOI: 10.1007/s10967-014-3254-3
  17. I. Antović, N. M. Antović, “Nasljedni efekti jonizujućeg zračenja – procjene rizika,” u Zborniku 29. Simp. Društva za zaštitu od zračenja Srbije i Crne Gore, Srebrno jezero, Srbija, 2017, str. 343 – 350. (I. Antović, N. M. Antović, “Hereditary effects of ionizing radiation – risk estimations,” in Proc. 29th Symp. Radiat. Prot. Soc. Ser. Monten., Srebrno jezero, Serbia, 2017, pp. 343 – 350.)
    Retrieved from: http://fulir.irb.hr/3649/2/Zbornik%20XXIX%20Simpozijum%20DZZ%20SCG%20Srebrno%20jezero.pdf
    Retrieved on: Jan. 21, 2019
  18. International Commission on Radiological Protection Statement on Radon, ICRP Ref: 00/902/09, ICRP, Ottawa, Canada, 2009.
    Retrieved from: http://www.icrp.org/docs/ICRP_Statement_on_Radon(November_2009).pdf
    Retrieved on: Jan. 21, 2019
  19. D. J. Pawel, J. S. Puskin, EPA assessment of risk from radon in homes, Rep. EPA 402-R03-003, EPA, Washington DC, USA, 2003.
    Retrieved from: https://www.epa.gov/sites/production/files/2015-05/documents/402-r-03-003.pdf
    Retrieved on: Feb. 3, 2019
  20. N. M. Antovic, N. Svrkota, I. Antovic, “Radiological impacts of natural radioactivity from soil in Montenegro,” Radiat. Prot. Dosim., vol. 148, no. 3, pp. 310 – 317, Feb. 2012.
    DOI: 10.1093/rpd/ncr087
    PMid: 21498861
  21. I. Softić, “Doze terestrijalnog gama zračenja u Podgorici,” Magistarski rad, Univerzitet Crne Gore, Prirodno-matematički fakultet, Podgorica, Crna Gora, 2017. (I. Softić, “Doses of terrestrial gamma radiation in Podgorica,” M.Sc. thesis, University of Montenegro, Faculty of Natural Sciences and Mathematics, Podgorica, Montenegro, 2017.)
    Retrieved from: https://www.ucg.ac.me/skladiste/blog_101/objava_4601/fajlovi/MSc%20rad%20_%20Ilda%20Softi%c4%87.pdf
    Retrieved on: May 15, 2019
  22. Environmental Measurements Laboratory (EML) Procedures Manual, Rep. HASL-300, U.S. Department of Homeland Security, New York (NY), USA, 1997.
    Retrieved from: https://www.hsdl.org/?abstract&did=487142
    Retrieved on: Apr. 2, 2019
  23. GammaVision-32 Software User’s Manual, 6th ed., AMETEK Inc. (ORTEC), Oak Ridge (TN), USA, 2003.
    Retrieved from: https://www.ortec-online.com/-/media/ametekortec/manuals/a66-mnl.pdf
    Retrieved on: Feb. 15, 2019
  24. M. A. Baloch et al., “A study on natural radioactivity in Khewra Salt Mines, Pakistan,” J. Radiat. Res., vol. 53, no. 3, pp. 411 – 421, May 2012.
    DOI: 10.1269/jrr.11162
    PMid: 22739011
  25. Z. Gledovic, O. Bojovic, T. Pekmezovic, “The pattern of lung cancer mortality in Montenegro,” Eur. J. Cancer Prev.,vol. 12, no. 5, pp. 373 – 376, Oct. 2003.
    DOI: 10.1097/00008469-200310000-00005
    PMid: 14512801
  26. L. A. Torre et al., “Global cancer statistics, 2012,” CA: Cancer J. Clin., vol. 65, no. 2, pp. 87 – 108, Mar. 2015.
    DOI: 10.3322/caac.21262
    PMid: 25651787
  27. L. A. Torre, R. L. Siegel, E. M. Ward, A. Jemal, “Global cancer incidence and mortality rates and trends – an update,”Cancer Epidemiol. Biomarkers Prev., vol. 25, no. 1, pp. 16 – 27, Jan. 2016.
    DOI: 10.1158/1055-9965.EPI-15-0578
    PMid: 26667886
  28. M. Nedović-Vuković, D. Laušević, A. Ljajević, M. Golubović, G. Trajković, “Lung cancer mortality in Montenegro, 1990 to 2015,” Croat. Med. J., vol. 60, no. 1, pp. 26 – 32, Feb. 2019.
    DOI: 10.3325/cmj.2019.60.26
    PMid: 30825275
    PMCid: PMC6406062
  29. Health Effects of Exposure to Radon (BEIR VI), Committee on the Biological Effects of Ionizing Radiation, Washington DC, USA, 1999.
    Retrieved from: https://www.nap.edu/read/5499/chapter/1
    Retrieved on: Jan. 15, 2019



Nevenka M. Antović, Nikola R. Svrkota

Pages: 90–95

DOI: 10.37392/RapProc.2019.18

Surface soil from 47 locations in Montenegro had been previously analyzed for radioactivity due to natural 226Ra, 232Th, 40K and man-made 137Cs, and showed mean activity concentrations around 41.1, 45.8, 500 and 95.2 Bq/kg, respectively. Discriminant Analysis used in the present study for the classification, with activity concentrations of radionuclides as independent variables and the Montenegro region (South, Center, North) as a grouping variable, showed 76.6% of original grouped cases as correctly classified. The radium equivalent activity, external and internal hazard index showed a mean of 142 Bq/kg, 0.39 and 0.5, respectively. An average external terrestrial gamma absorbed dose rate was found to be 67.5 nGy/h – for natural radionuclides only, and 79.3 nGy/h for natural radionuclides and 137Cs. The corresponding annual effective dose showed a mean of 0.08 mSv and around 0.1 mSv, respectively. These hazard indices, together with radionuclide activities, are used in the factor analysis performed with Principal Component Analysis as the extraction method and Varimax with Kaiser Normalization as the rotation method. Two components were extracted. The first one loaded basically on 232Th and 226Ra activity explained ~80.6% of the total variance, while the second component explaining ~12.2% of the total variance is found to be strongly correlated with 137Cs and 40K activity.

  1. Statistical Yearbook of Montenegro 2018, Statistical Office of Montenegro – MONSTAT, Podgorica, Montenegro, 2018.
    Retrieved from: http://monstat.org/userfiles/file/publikacije/godisnjak%202018/GODISNJAK%202018%20PRELOM.pdf
    Retrieved on: Sep. 26, 2019
  2. N. M. Antovic, N. Svrkota, I. Antovic, “Radiological impacts of natural radioactivity from soil in Montenegro,” Radiat. Prot. Dosim., vol. 148, no. 3, pp. 310 – 317, Feb. 2012.
    DOI: 10.1093/rpd/ncr087
    PMid: 21498861
  3. N. M. Antović, D. S. Bošković, N. R. Svrkota, I. M. Antović, “Radioactivity in soil from Mojkovac, Montenegro, and assessment of radiological and cancer risk,” Nucl. Technol. Radiat. Prot., vol. 27, no. 1, pp. 57 – 63, Mar. 2012.
    DOI: 10.2298/NTRP1201057A
  4. N. M. Аntović et al., “Radioactivity impact assessment of Nikšić region in Montenegro,” J. Rаdioаnаl. Nucl. Chem., vol. 302, no. 2, pp. 831 – 836, Nov. 2014.
    DOI: 10.1007/s10967-014-3254-3
  5. N. M. Аntovic, P. Vukotic, N. Svrkotа, S. K. Аndrukhovich, “Pu-239+240 аnd Cs-137 in Montenegro soil: their correlation and origin,” J. Environ. Rаdioаct., vol. 110, pp. 90 – 97, Aug. 2012.
    DOI: 10.1016/j.jenvrad.2012.02.001
    PMid: 22445877
  6. Sources and Effects of Ionizing Radiation, Annex B, Rep. A/55/46, UNSCEAR, New York (NY), USA, 2000.
    Retrieved from: https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Annex-B.pdf
    Retrieved on: Jun. 25, 2016
  7. Sources and Effects of Ionizing Radiation, Annex B, Rep. A/63/46, UNSCEAR, New York (NY), USA, 2010.
    Retrieved from: https://www.unscear.org/docs/publications/2008/UNSCEAR_2008_Annex-B-CORR.pdf
    Retrieved on: Feb. 10, 2019
  8. Environmental Measurements Laboratory (EML) Procedures Manual, Rep. HASL-300, U.S. Department of Homeland Security, New York (NY), USA, 1997.
    Retrieved from: https://www.hsdl.org/?abstract&did=487142
    Retrieved on: Apr. 2, 2019
  9. GammaVision-32 Software User’s Manual, 6th ed., AMETEK Inc. (ORTEC), Oak Ridge (TN), USA, 2003.
    Retrieved from: https://www.ortec-online.com/-/media/ametekortec/manuals/a66-mnl.pdf
    Retrieved on: Feb. 10, 2019
  10. Recommended data, Laboratoire National Henri Becquerel, Gif-Sur-Yvette, France, 2017.
    Retrieved from: http://www.nucleide.org/DDEP_WG/DDEPdata.htm
    Retrieved on: Nov. 09, 2018
  11. J. Beretka, P. J. Matthew, “Natural radioactivity of Australian building materials, industrial wastes and by-products,” Health Phys., vol. 48, no. 1, pp. 87 – 95, Jan. 1985.
    DOI: 10.1097/00004032-198501000-00007
    PMid: 3967976
  12. The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM. Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
    Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF
    Retrieved on: Jul. 11, 2019
  13. SPSS Statistics version 20, IBM, Armonk (NY), USA, 2011.
    Retrieved from: https://www.ibm.com/support/pages/ibm-spss-statistics-200-release-notes#relnotes__description
    Retrieved on: Aug. 29, 2019
  14. N. M. Antovic, N. Svrkota, I. Antovic, R. Svrkota, D. Jančić, “Radioactivity in Montenegro beach sands and assessment of the corresponding environmental risk,” Isot. Environ. Health Stud., vol. 49, no. 2, pp. 153 – 162, Jun. 2013.
    DOI: 10.1080/10256016.2013.734303
    PMid: 23452289
  15. M. Mirković i dr., “Geološka karta Crne Gore, 1:200.000,”Zavod za geološka istraživanja Crne Gore, Podgorica, Crna Gora, 1985. (M. Mirković et al., “Geological Map of Montenegro, 1:200,000,”Geological Survey of Montenegro, Podgorica, Montenegro, 1985.)
    Retrieved from: https://geozavod.co.me/
    Retrieved on: Jun. 29, 2019


Ivanka Antović, Danijela Šuković, Snežana Andjelić, Nikola Svrkota

Pages: 96–102

DOI: 10.37392/RapProc.2019.19

This paper deals with the concentration of Pb, Cd, Cu, Fe, Mn, Ni, Cr and Zn, and activity concentrations of 137Cs, 40K, as well as levels of 226Ra and 232Th through their daughters 214Bi and 228Ac, in muscles of six fish species from the South Adriatic Sea adjacent to Montenegro. Specimens of three mullet species from the Liza genus – Liza aurata (golden grey mullet), Liza saliens (leaping mullet) and Liza ramada(thinlip grey mullet), were caught by a trawl net in the area of Tivat – Boka Kotorska Bay, as well as Merluccius merluccius (European hake), Dicentrarchus labrax (European seabass), Sparus aurata (gilt-head sea bream). Element concentrations were determined in a standard procedure using iCAP 6000 ICP-OES and atomic absorption spectrophotometer AA-6800, whilst radionuclide activity concentrations – in a standard HPGe ORTEC gamma spectrometry. The results showed a level of 137Cs somewhat lower than in the muscles of previously analyzed the other (mullet) species from the South Adriatic, in contrast to 214Bi level which is mostly found to be slightly higher than its parent (226Ra) level in the other previously analyzed species. Committed effective dose from the annual intake of radionuclides due to an adult fish consumption is found to be highest for M. merluccius (13.8 mSv), showing all the radionuclides above minimum detectable activity. In muscle of L. aurata element concentrations were found to be ordered as: Fe>Zn>Cr>Mn>Ni>Cu>Pb>Cd. This species showed a concentration of each element higher than the other species (particularly Pb, Fe, Mn, Ni, and Cr). The concentration of Zn only could be considered as more or less comparable in all the muscles. No one muscle showed a concentration of toxic trace elements Pb and Cd exceeding the limits from the EU regulations. A potential health risk associated with Pb and Cd intake due to consumption of analyzed fish species is estimated using the target hazard quotient found to be £0.055.
  1. R. J. Medeiros et al., “Determination of inorganic trace elements in edible marine fish from Rio de Janeiro State, Brazil,” Food Control, vol. 23, no. 2, pp. 535 –541, Feb. 2012.
    DOI: 10.1016/j.foodcont.2011.08.027
  2. K. M. El-Moselhy, A. I. Othman, H. A. El-Azem , M. E. A. El-Metwally, “Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt,” Egypt. J. Basic and Appl. Sci., vol. 1, no. 2, pp. 97 – 105, Dec. 2014.
    DOI: 10.1016/j.ejbas.2014.06.001
  3. Evaluation of certain food additives and the contaminants mercury, lead, and cadmium, WHO Technical Report Series No. 505, WHO, Geneva, Switzerland, 1972.
    Retrieved from: https://apps.who.int/iris/bitstream/handle/10665/40985/WHO_TRS_505.pdf
    Retrieved on:Feb. 07, 2016
  4. Compilation of legal limits for hazardous substances in fish and fishery products, FAO Fisheries Circular No. 764, FAO, Rome, Italy, 1983.
    Retrieved from: http://www.fao.org/3/q5114e/q5114e.pdf
    Retrieved on: Jan. 26, 2017
  5. Evaluation of certain food additives and the contaminants, WHO Technical Report Series No. 776, WHO, Geneva, Switzerland, 1989.
    Retrieved from: https://apps.who.int/iris/bitstream/handle/10665/39252/WHO_TRS_776.pdf
    Retrieved on: Feb. 07, 2016
  6. The Commission of European Communities. (Jan. 19, 2005). COMMISSION REGULATION (EC) No. 78/2005. Amending Regulation (EC) No. 466/2001 as regards heavy metals.
    Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:016:0043:0045:EN:PDF
    Retrieved on: Nov. 15, 2015
  7. Savezna vlada Savezne Republike Jugoslavije. (Maj 28, 1992). Br. 05/92. Pravilnik o kolicinama pesticida, metala i metaloida i drugih otrovnih supstancija, hemioterapeutika, anabolika i drugih supstancija koje se mogu nalaziti u namirnicama. (Federal Government of the Federal Republic of Yugoslavia. (May 28, 1992). No. 05/92. Ordinance on the quantities of pesticides, metals and metalloids and other toxic substances, chemotherapeutics, anabolics and other substances which may be present in foods.)
    Retrieved from: http://extwprlegs1.fao.org/docs/pdf/yug72666.pdf
    Retrieved on: Feb. 04, 2016
  8. Službeni list Crne Gore. (Dec. 8, 2009, Sep. 30, 2015). br. 81/2009, 55/2015. Pravilnik o dozvoljenim količinama teških metala, mikotoksina i drugih supstanci u hrani. (Official Gazette of Montenegro. (Dec. 8, 2009, Sep. 30, 2015). No. 81/2009, 55/2015. Rulebook on the allowable amounts of heavy metals, mycotoxins and other substances in food.)
    Retrieved from: http://www.mzdravlja.gov.me/ResourceManager/FileDownload.aspx?rid=236146&rType=2&file=Pravilnik%20o%20dozvolje nim%20koli%C4%8Dinama%20te% C5%A1kih%20metala,%20mikotoksina%20i%20drugih%20supstanci%20u%20hrani.pdf;
    Retrieved on: Apr. 24, 2016
  9. N. M. Antovic, N. Svrkota, I. Antovic, R. Svrkota, D. Jančić, “Radioactivity in Montenegro beach sands and assessment of the corresponding environmental risk,” Isot. Environ. Health Stud., vol. 49, no. 2, pp. 153 – 162, Jun. 2013.
    DOI: 10.1080/10256016.2013.734303
    PMid: 23452289
  10. J. M. Thomson, “The Mugilidae of the world,” Mem. Qld. Mus., vol. 41, no. 3, pp. 457 – 562, 1997.
    Retrieved from: http://biostor.org/pdfproxy.php?url=https%3A%2F%2Farchive.org%2Fdownload%2Fbiostor-105310%2Fbiostor-105310.pdf
    Retrieved on: Mar. 20, 2019
  11. Species fact sheet, FAO, Rome, Italy.
    Retrieved from: http://www.fao.org/fishery/species/search/en
    Retrieved on:Jun. 03, 2019
  12. N. M. Antovic, I. Antovic, N. Svrkota, “Levels of 232Th activity in the South Adriatic Sea marine environment of Montenegro,” J. Radioanal. Nucl. Chem., vol. 284, no. 3, pp. 605 – 614, Jun. 2010.
    DOI: 10.1007/s10967-010-0512-x
  13. I. Antovic, N. M. Antovic, “Determination of concentration factors for Cs-137 and Ra-226 in the mullet species Chelon labrosus (Mugilidae) from the South Adriatic Sea,” J. Environ. Radioact.,vol. 102, no. 7, pp. 713 – 717, Jul. 2011.
    DOI: 10.1016/j.jenvrad.2011.04.006
    PMid: 21514703
  14. I. Antovic, N. Svrkota, N. M. Antovic, “Beryllium-7 in six fish species from the Bay of Boka Kotorska,” in Book of Abstr. 7th Int. Conf. Radiation in Various Fields of Research (RAD 2019), Herceg Novi, Montenegro, 2019, p. 437.
    Retrieved from: http://www.rad-conference.org/books.php
    Retrieved on: May 15, 2019
  15. N. Stamatis, N. Kamidis, P. Pigada, D. Stergiou, A. Kallianiotis, “Bioaccumulation levels and potential health risks of mercury, cadmium, and lead in Albacore (Thunnus alalunga, Bonnaterre, 1788) from the Aegean Sea, Greece,” Int. J. Environ. Res. Public Health, vol. 16, no. 5, p. 821, Mar. 2019.
    DOI: 10.3390/ijerph16050821
    PMid: 30845745
    PMCid: PMC6427763
  16. Compendium of dose coefficients based on ICRP Publication 60, vol. 41, ICRP Publication no. 119, ICRP, Ottawa, Canada, 2012.
    Retrieved from: http://www.icrp.org/docs/P%20119%20JAICRP%2041(s)%20Compendium%20of%20Dose%20Coefficients%20based%20on %20ICRP%20Publication%2060.pdf
    Retrieved on: Mar. 30, 2016
  17. J. Usero, C. Izquierdo, J. Morillo, I. Gracia, “Heavy metals in fish (Solea vulgaris, Anguilla anguilla and Liza aurata) from salt marshes on the southern Atlantic coast of Spain,” Environ. Int., vol. 29, no. 7, pp. 949 – 956, Jan. 2004.
    DOI: 10.1016/S0160-4120(03)00061-8
    PMid: 14592572
  18. H. T. Jelodar, M. S. Baei, S. H. Najafpour, H. Fazli, “The comparison of heavy metals concentrations in different organs of Liza aurata inhabiting in southern part of Caspian Sea,” World Appl. Sci. J., vol. 14, spec. issue, pp. 96 – 100, 2011.
    Retrieved from: https://www.academia.edu/31511122/The_Comparison_of_Heavy_Metals_Concentrations_in_Different_Organs_of_Liza_aur ata_ Inhabiting_in_Southern_Part_of_Caspian_Sea
    Retrieved on: Jan. 23, 2019
  19. M. H. Bahnasawy, A. A. Khidr, N. Dheina, “Seasonal variations of heavy metals concentrations in mullet, Mugil cephalus and Liza ramada (Mugilidae) from Lake Manzala, Egypt,” Egypt. J. Aquat. Biol. Fish., vol. 13, no.2, pp. 81 – 100, Apr. 2009.
    DOI: 10.21608/ejabf.2009.2034
  20. C. Fernandes, A. Fontaínhas-Fernandes, F. Peixoto, M. A. Salgado, “Bioaccumulation of heavy metals in Liza saliens from the Esmoriz–Paramos coastal lagoon, Portugal,” Ecotoxicol. Environ. Saf., vol. 66, no. 3, pp. 426 – 431, Mar. 2007.
    DOI: 10.1016/j.ecoenv.2006.02.007
    PMid: 16620977
  21. M. Dural, M. Z. L. Goksu, A. A. Ozak, “Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon,” Food Chem., vol. 102, no. 1, pp. 415 – 421, Dec. 2007.
    DOI: 10.1016/j.foodchem.2006.03.001
  22. M. P. Olgunoglu, E. Artar, İ. A. Olgunoglu, “Comparison of heavy metal levels in muscle and gills of four benthic fish species from the Northeastern Mediterranean Sea,” Pol. J. Environ. Stud., vol. 24, no. 4, pp. 1743 – 1748, 2015.
    DOI: 10.15244/pjoes/38972
  23. A. Ozyilmaz, A. Demirci, D. B. Konuskan, S. Demirci, “Macro minerals, micro minerals, heavy metal, fat, and fatty acid profiles of European hake (Merluccius merluccius Linnaeus, 1758) caught by gillnet,” J. Entomol. Zool. Stud., vol. 5, no. 6, pp. 272 – 275, 2017.
    Retrieved from: http://www.entomoljournal.com/archives/2017/vol5issue6/PartD/5-5-219-283.pdf
    Retrieved on: Jun. 04, 2019
  24. H. Karadede, S. A. Oymak, E. Unlu, “Heavy metals in mullet, Liza abu, and catfish, Silurus triostegus, from the Ataturk Dam Lake (Euphrates), Turkey,” Environ. Int., vol. 30, no. 2, pp. 183 – 188, Apr. 2004.
    DOI: 10.1016/S0160-4120(03)00169-7
    PMid: 14749107
  25. F. Yılmaz, N. Özdemir, A. Demirak, A. L. Tuna, “Heavy metal levels in two fish species Leuciscus cephalus and Lepomis gibbosus,Food Chem., vol. 100, no. 2, pp. 830 – 835, 2007.
    DOI: 10.1016/j.foodchem.2005.09.020
  26. F. H. Bashir, M. S. Othman, A. G. Mazlan, S. M. Rahim, K. D. Simon, “Heavy metal concentration in fishes from the coastal waters of Kapar and Mersing, Malaysia,” Turk. J. Fish. Aquat. Sci., vol. 13, no. 2, pp. 375 – 382, Jun. 2013.
    Retrieved from: https://pdfs.semanticscholar.org/6ddd/3fb72046819662c96a07964ccd8e0ed5d9bf.pdf
    Retrieved on: May 17, 2019
  27. M. Perugini et al., “Heavy metal (As, Cd, Hg, Pb, Cu, Zn, Se) concentrations in muscle and bone of four commercial fish caught in the central Adriatic Sea, Italy,” Environ. Monit. Assess., vol. 186, no. 4, pp. 2205 – 2213, Apr. 2014.
    DOI: 10.1007/s10661-013-3530-7
    PMid: 24242233
  28. Sources and Effects of Ionizing Radiation, Annex B, Rep. A/55/46, UNSCEAR, New York (NY), USA, 2000.
    Retrieved from: https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Annex-B.pdf
    Retrieved on: Jun. 25, 2016


D. Ganzha, D. Ganzha, A. Nazarov, B. Sploshnoi

Pages: 103–107

DOI: 10.37392/RapProc.2019.20

Tension breaking strength of common reed leaves was studied. Samples of leaves were taken in six aquatic ecosystems in the Chernobyl exclusion zone. In the samples of leaves, the specific activity of 90Sr and 137Cs was measured, as well as the accumulation of macro elements of the plant’s mineral nutrition. According to the measurement results, the doses of internal radiation from the incorporated radionuclides were calculated. A close statistical relationship was established between the tensile breaking strength of the leaves with respect to their radiation exposure and the reciprocal statistical relationship of irradiation dose to the accumulated leaves to macroelements. It is shown that the tensile breaking strength of the leaves is mainly influenced by the irradiation dose from incorporated 137Cs in the leaves. The data obtained show that the damaging effect of ionizing radiation leads to an increase in the tensile breaking strength of the leaves, and the enrichment with macroelements of mineral nutrition has a radioprotective effect. The results of statistical analysis indicate that the tensile breaking strength of common reed leaves can be considered a reliable test when assessing the irradiation dose of internal exposure from incorporated radionuclides.
  1. Д. Ганжа, О. Назаров, “Вплив хронічного радіаційного опромінення на жилкування та розташування продихів у листках Phragmites australis (Cav.) Trin. ex Steud,” Вісник Львівського університету, Випуск 69, Львов, Украина, 2015. (D. Ganzha, O. Nazarov, “Influence of chronic radiation exposure on the housing and location of stomata in the leaves Phragmites australis (Cav.) Trin. ex stoud,” Bull. University of Lviv, no. 69, Lviv, Ukraine, 2015.)
    Retrieved from: http://prima.franko.lviv.ua/faculty/biologh/wis/69/6/14/14.pdf
    Retrieved on: Apr. 21, 2019
  2. Д. Д. Ганжа, А. Б. Назаров, “Изменение механических характеристик листьев тростника обыкновенного под влиянием хронического радиационного облучения,” в Материалы Биологические эффекты малых доз ионизирующей радиации и радиоактивное загрязнение среды, Сыктывкар, Россия, 2014, стр. 210 – 214. (D. D. Ganja, A. B. Nazarov, “Changes in mechanical characteristics in phragmites communis resulted from radioactive irradiation chronic effect,” in Proc. Int. Conf. Biol. Eff. Low Dose Ioniz. Radiat. Radioact. Pollut. Environ., Syktyvkar, Russia, 2014, pp. 210 – 214.)
    Retrieved from: https://ib.komisc.ru/add/conf/biorad/wp-content/uploads/2014/01/material_biorad_2014.pdf
    Retrieved on: Jun. 15, 2019
  3. M. T. Максимов, Г. О. Оджагов, Радиоактивные загрязнения и их измерение, Изд. 2, Москва, Россия: Энергоатомиздат, 1989. (M. T. Maksimov, G. O. Odjagov, Radioactive contamination and their measurement, 2nd ed., Moscow, Russia: Energoatomizdat, 1989.)
    Retrieved from: https://urss.ru/cgi-bin/db.pl?lang=Ru&blang=ru&page=Book&id=111343
    Retrieved on: Mar. 30, 2019
  4. J. Brown, P. Strand, A. Hosseini, P. Børretzen, Handbook for Assessment of the Exposure of Biota to Ionising Radiation from Radionuclides in the Environment, European Commission, Brussels, Belgium, 2003.
    Retrieved from: https://wiki.ceh.ac.uk/download/attachments/115802176/fasset_d5.pdf%3Fversion%3D1%26modificationDate% 3D1263905014000
    Retrieved on: Oct. 6, 2019
  5. Корма. Методы определения аммиачного азота и активной кислотности (рН), ГОСТ 26180-84, Aпр. 29, 1984. (Fodder. Determination of ammonia nitrogen content and actual acidity), GOST 26180–84, Apr. 29, 1984.)
    Retrieved from: http://docs.cntd.ru/document/1200024363
    Retrieved on: Sep. 9, 2019
  6. Бумага и картон. Методы определения влагопрочности (с Изменениями N 1, 2), ГОСТ 13525.7-68, Июл. 5, 1968. (Paper and board. Methods for determination of wet strength, GOST 13525.1-68, Jul. 5, 1968.)
    Retrieved from: http://docs.cntd.ru/document/1200018216
    Retrieved on: Dec. 21, 2018
  7. D. Ganzha, Ch. Ganzha, A. Nazarov, B. Sploshnoi, “Specifics of using phragmites australis for holding a radioecological monitoring,” in Proc. 3rd Int. Con. Radiation and Applications in Various Fields of Research (RAD2015), Budva, Montenegro, 2015, pp. 257 - 262.
    Retrieved from: http://www.rad-conference.org/proceedings.php
    Retrieved on: Sep. 13, 2019
  8. Evaluation of measurement data — Guide to the expression of uncertainty in measurement, 1st ed., JCGM, Paris, France, 2008.
    Retrieved from: https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
    Retrieved on: Jul. 13, 2019


Rena A. Mikailova, Aleksei V. Panov, Dmitry N. Kurbakov

Pages: 108–112

DOI: 10.37392/RapProc.2019.21

The paper presents an overview of the radioecological monitoring programme of aquatic ecosystems in the vicinity of nuclear power plants and presents the results of its implementation in the 30-km zone of the Rooppur NPP in the People’s Republic of Bangladesh. The environmental survey has shown that the content of radionuclides in different components of observed freshwater ecosystems is low and that the radiation situation of the region is safe.
  1. R. Karim et al., “Nuclear energy development in Bangladesh: A study of opportunities and challenges,” Energies, vol. 11, no. 7, Jun. 2018.
    DOI: 10.3390/en11071672
  2. А. В. Панов, Н. И. Санжарова, В. К. Кузнецов, С. И. Спиридонов, Д. Н. Курбаков, “Анализ подходов к радиационно-экологическому мониторингу в районах размещения ядерно- и радиационно-опасных объектов. Обзор,” Бюллетень Национального Радиационно-Эпидемиологического Регистра, том 28, но. 3, 2019. (A. V. Panov, N. I. Sanzharova, V. K. Kuznetsov, S. I. Spiridonov, D. N. Kurbakov, “Analysis of approaches to organization of radioecological monitoring on areas of nuclear and radiation-hazardous facilities location. Review,” Bull. National Radiation and Epidemiological Registry, vol. 28, no. 3, Moscow, Russia, 2019.)
    DOI: 10.21870/0131-3878-2019-28-3-75-95
  3. Санитарно-защитные зоны и зоны наблюдения радиационных объектов. Условия эксплуатации и обоснование границ, СП—07, июня 27, 2007. (Sanitary protection zones and observation zones of radiation objects. Operating conditions and justification of borders, SP—07, Jun. 27, 2007.
    Retrieved from: https://files.stroyinf.ru/Data2/1/4293841/4293841228.pdf
    Retrieved on: Dec. 8, 2019
  4. Programmes and systems for source and environmental radiation monitoring, Safety Reports Series no. 64, IAEA, Vienna, Austria, 2010.
    Retrieved from: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1427_web.pdf
    Retrieved on: Aug. 22, 2019
  5. Environmental and source monitoring for purposes of radiation protection: safety guide, Safety Standards Series no. RS-G-1.8, IAEA, Vienna, Austria, 2005.
    Retrieved from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1216_web.pdf
    Retrieved on: Aug. 22, 2019
  6. Инженерно-экологические изыскания для строительства, СП 11-102-97, Aвг. 15, 1997. (Engineering environmental site investigations for construction, SP 11-102-97, Aug. 15, 1997.)
    Retrieved from: https://files.stroyinf.ru/Data2/1/4294851/4294851544.pdf
    Retrieved on: Aug. 22, 2019
  7. Организация и проведение режимных наблюдений за состоянием и загрязнением поверхностных вод суши, РД 52.24.309-2016, Дец. 20, 2016. (Organisation and conduct of operational monitoring of the state and pollution of surface waters, RD 52.24.309-2016, Dec. 20, 2016.)
    Retrieved from: https://pdf.standartgost.ru/catalog/Data2/1/4293748/4293748080.pdf
    Retrieved on: Aug. 22, 2019
  8. Охрана природы. Гидросфера. Правила контроля качества воды водоёмов и водотоков, ГОСТ, Янв. 1, 1983. (Nature protection. Hydrosphere. Procedures for quality control of water in reservoires and stream flows, GOST, Jan. 1, 1983.)
    Retrieved from: http://docs.cntd.ru/document/gost-17-1-3-07-82
    Retrieved on: Aug. 22, 2019
  9. Нормы радиационной безопасности. Санитарные правила и нормативы (НРБ-99/2009), СанПиН, июля 7, 2009. (Radiation Safety Standards NRB-99/2009. Sanitary standards and regulations, SanPiN, Jul. 7, 2009.)
    Retrieved from: http://docs.cntd.ru/document/902170553
    Retrieved on: Aug. 22, 2019
  10. Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ 99/2010), СП, Aвг. 11, 2010. (Basic sanitary rules for ensuring radiation safety (OSPORB 99/2010), SP, Aug. 11, 2010.)
    Retrieved from: https://files.stroyinf.ru/Data2/1/4293816/4293816468.pdf
    Retrieved on: Aug. 22, 2019
  11. АЭС Руппур. Энергоблоки 1, 2. Предпроектная документация. Отчеты по инженерным изысканиям. Т. 5. Технический отчет инженерно-экологические изысканиям. Книга 2., АО Атомэнергопроект, Москва, Россия, 2014. (Rooppur NPP. Units 1, 2. Pre-project documentation. Reports on the engineering surveys. V. 5. Technical report on engineering and environmental surveys. Book 2., Atomenergoproekt JSC, Moscow, Russia, 2014.)
  12. АЭС Руппур. Энергоблоки 1,2. Предпроектная документация. Сводный технический отчёт. Экологический мониторинг в 30-км зоне площадки АЭС Руппур: комплексное обследование атмосферного воздуха, наземных и водных экосистем. Книги 1, 2., АО Атомэнергопроект, Москва, Россия, 2015. (Rooppur NPP. Units 1, 2. Pre-project documentation. Consolidated technical report. Environmental monitoring in the 30-km zone of the Rooppur NPP site: a comprehensive survey of atmospheric air, terrestrial and aquatic ecosystems. Books 1, 2., Atomenergoproekt JSC, Moscow, Russia, 2015.)
  13. АЭС Руппур. Энергоблоки 1,2. Технический отчёт. Экологический мониторинг на площадке АЭС Руппур в 2016 г. Книги 1, 2., АО Атомэнергопроект, Москва, Россия, 2017. (Rooppur NPP. Units 1, 2. Technical report. Environmental monitoring of the Rooppur NPP site in 2016. Books 1, 2., Atomenergoproekt JSC, Moscow, Russia, 2017.)
  14. АЭС Руппур. Энергоблоки 1,2. Технический отчёт. Экологический мониторинг на площадке АЭС Руппур в 2017 г. Книги 1, 2., АО Атомэнергопроект, Москва, Россия, 2017. Rooppur NPP. Units 1, 2. Technical report. Environmental monitoring of the Rooppur NPP site in 2017. Books 1, 2., Atomenergoproekt JSC, Moscow, Russia, 2017.
  15. S. R. Chakraborty, A. S. Mollah, A. Begum, G. U. Ahmad, “Radioactivity in Drinking Water of Bangladesh,” Jpn. J. Health Phys., vol. 40, no. 2, pp. 191 – 201, 2005.
    DOI: 10.5453/jhps.40.191
  16. General Standard For Contaminants And Toxins In Food And Feed,CODEX STAN 193-1995,2015.
    Retrieved from: http://www.fao.org/input/download/standards/17/CXS_193e_2015.pdf
    Retrieved on: Dec. 8, 2019
  17. A. S. Mollah, S. R. Chakraborty, “Radioactivity and Radiation Levels in and around the Proposed Nuclear Power Plant Site at Rooppur,” Jpn. Health J. Phys., vol. 44, no. 4, pp. 408 – 413, 2009.
    DOI: 10.5453/jhps.44.408
  18. M. I. Khalil et al., “Assessment of natural radioactivity levels and identification of minerals in Brahmaputra (Jamuna) river sand and sediment, Bangladesh,” Radiat. Prot. Environ., vol. 39, no. 4, pp. 204 – 211, 2016.
    DOI: 10.4103/0972-0464.199980

Radiation Detectors


I. Asensi Tortajada et al.

Pages: 113–116

DOI: 10.37392/RapProc.2019.22

Mini-MALTA is a Monolithic Active Pixel Sensor prototype developed in the TowerJazz 180 nm CMOS imaging process, with a small collection electrode design (3um), and a small pixel size (36.4 um), on high resistivity substrates and large voltage bias. It targets the outermost layer of the ATLAS ITK Pixel detector for the HL-LHC. This design addresses the pixel in-efficiencies observed in MALTA and TJ-Monopix to meet the radiation hardness requirements. This contribution will present the results from characterisation in particle beam tests that show full efficiency up to 1E15 neq/cm2 and 70 Mrad.
  1. ATLAS Phase-II Upgrade Scoping Document, Rep. CERN-LHCC-2015-020; LHCC-G-166, CERN, Geneva, Switzerland, 2015.
    Retrieved from: https://cds.cern.ch/record/2055248
    Retrieved on: Feb. 25, 2019
  2. Technical Design Report for the ATLAS Inner Tracker Pixel Detector, Rep. CERN-LHCC-2017-021; ATLAS-TDR-030, CERN, Geneva, Switzerland, 2017.
    Retrieved from: https://cds.cern.ch/record/2285585
    Retrieved on: Feb. 25, 2019
  3. P. S. Miyagawa, I. Dawson, Radiation background studies for the Phase II inner tracker upgrade, Rep. ATL-UPGRADE-PUB-2013-012, CERN, Geneva, Switzerland, 2013.
    Retrieved from: https://cds.cern.ch/record/1516824
    Retrieved on: Feb. 25, 2019
  4. H. Pernegger et al., “First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors,” J. Instrum., vol. 12, no. 6, Jun. 2017.
    DOI: 10.1088/1748-0221/12/06/P06008
  5. I. Caicedo et al., “The Monopix chips: depleted monolithic active pixel sensors with a column-drain read-out architecture for the ATLAS Inner Tracker upgrade,”in Proc. 9th Int. Workshop Semicond. Pixel Detect. Part. Imaging (PIXEL 2018), Taipei, Taiwan, 2018.
    DOI: 10.1088/1748-0221/14/06/C06006
  6. R. Cardella et al., “MALTA: an asynchronous readout CMOS monolithic pixel detector for the ATLAS High-Luminosity upgrade,” in Proc. 9th Int. Workshop Semicond. Pixel Detect. Part. Imaging(PIXEL 2018), Taipei, Taiwan, 2018.
    DOI : 10.1088/1748-0221/14/06/C06019
  7. M. Munker et al., “Simulations of CMOS pixel sensors with a small collection electrode, improved for a faster charge collection and increased radiation tolerance,” J. Instrum., vol. 14, no. 5, May 2019.
    DOI: 10.1088/1748-0221/14/05/C05013
  8. I. A. Tortajada, “MiniMALTA: Radiation hard pixel designs for small-electrode monolithic CMOS sensors for the High Luminosity LHC,” J. Instrum., Unpublished.
  9. M. Kiehn et al., Proteus beam telescope reconstruction version 1.4.0, Zenodo, Geneva, Switzerland, 2019.
    DOI: 10.5281/zenodo.2586736
  10. C. Kleinwort, “General broken lines as advanced track fitting method,” Nucl. Instrum. Methods Phys. Res. vol. 673, pp. 107 – 110, May 2012.
    DOI: 10.1016/j.nima.2012.01.024


Tufic Madi Filho, Maria da Conceição Costa Pereira, José Roberto Berretta, Lucas Faustino Tomaz, Miriam Nieri Madi

Pages: 117–121

DOI: 10.37392/RapProc.2019.23

The development of new radiation detectors using scintillation crystals, which increase response speed, dose and energy accuracy and, at the same time, the feasibility of simplifying and reducing costs in the production process are always necessary. In the CTR-IPEN laboratory, pure and doped CsI crystals were grown using the Bridgman technique. This work shows the obtained results using a doped CsI scintillator with the converters: Br, Pb, Tl, Li as alpha, beta ,gamma and neutron detectors.
  1. M. C. C. Pereira, “Desenvolvimento de cristais baseados em iodeto de Césio para aplicação como detectores de radiação” Tese de doutorado, Universidade de São Paulo, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brasil, 2006. (M. C. C. Pereira, “Development of crystals based in cesium iodide for application as radiation detectors,” Ph.D thesis, University of Sao Paulo, Nuclear and Energy Research Institute, Sao Paulo, Brazil, 2006.)
    DOI: 10.11606/T.85.2006.tde-16052012-084114
  2. M. C. C. Pereira, T. M. Filho, M. M. Hamada,“Development of crystals based on cesium iodide for measurements of gamma radiation and alpha particles,” Nukleonika, vol. 54, no. 3, pp. 151 – 155, 2009.
    Retrieved from: http://www.nukleonika.pl/www/back/full/vol54_2009/v54n3p151f.pdf
    Retrieved on: Apr. 11, 2019
  3. M. C. C. Pereira, T. M. Filho, M. M. Hamada, “The effect of Pb2+ dopant in the crystal of CsI and its application as scintillation detector: A study of alpha particles,” Radiat. Eff. Defects in Solids, vol. 167, no. 12, pp. 921 – 928, Nov. 2012.
    DOI: 10.1080/10420150.2012.723002
  4. M. C. C. Pereira, T. M. Filho, “Scintillation Characteristics of CsI Crystal Doped Br under Gamma and Alpha Particles Excitation,” Mater. Sci. Appl., vol. 5, no. 6, pp. 368 – 377, May 2014.
    DOI: 10.4236/msa.2014.56042
  5. M. C. C. Pereira, T. M. Filho, V. M. Lopes, J. R. Berretta, J. P. N. Cárdenas, “Scintillation Response of CsI:Tl Crystal Under Neutron, Gamma, Alpha Particles and Beta Excitations,” in Proc. 2015 Int. Nuc. Atl. Conf. (INAC 2015),Sao Paulo, Brazil, 2015.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/47/032/47032097.pdf?r=1&r=1
    Retrieved on: Mar. 15, 2019
  6. M. C. C. Pereira, T. M. Filho, J. R. Berretta, C. H. Mesquita, “Characteristics of the CsI:Tl Scintillator Crystal for X-Ray Imaging Applications,” Mater. Sci. Appl.,vol. 9, no. 2, pp. 268 – 280, Feb. 2018.
    DOI: 10.4236/msa.2018.92018
  7. T. M. Filho, M. C. C. Pereira, J. R. Berretta, J. P. N. Cárdenas, “Study of a Li doped CsI scintillator crystal as a neutron detector,” J. Phys. Conf. Ser., vol. 630, no. 1, 2015.
    DOI: 10.1088/1742-6596/630/1/012010
  8. M. C. C. Pereira, T. M. Filho, J. P. N. Cárdenas, “Inorganic scintillation crystals for neutron detection,” in Proc. 2013 3rd Int. Conf. Adv. Nucl. Instrum., Measurement Methods and their Appl. (ANIMMA), Marseille, France, 2013.
    DOI: 10.1109/ANIMMA.2013.6727878


Nesrin Teki̇n, Ferdi Sarimli, Zeynel Abidin Sezer, Ercan Yilmaz

Pages: 122–124

DOI: 10.37392/RapProc.2019.24

In this study, a new reader has been designed to measure the amount of radiation dose detected by RadFET (pMOSFET) sensor. The designed reader calculates the voltage threshold voltage (Vth) shifts of the pMOSFET to determine radiation dose and display it on the Touch TFT LCD screen placed on the printed electronic circuit. It has been developed more in particular to be easily used in radiotherapy and other healthcare field which have radiation sources. The electronic board has also been developed to adjust and read the data for SiO2 and Er3O2 sensor structured RadFETs. The electronic card has been designed with STM32F103 series processor that has 12-bit ADC resolution. In addition, specific Bluetooth circuit has been designed for communication. Thus, dose measurements versus date graph, personal details (name, age etc.) can be sent to personal computers and devices such as smart phones and tablets. Dose measurements can be currently kept by micro SD card.
  1. A. Holmes-Siedle, “The space-charge dosimeter: General principles of a new method of radiation detection,” Nucl. Instrum. Meth., vol. 121, no. 1, pp. 169 – 179, Oct. 1974.
    DOI: 10.1016/0029-554X(74)90153-0
  2. C. Pongpisit, L. Adul, G. Qi-Wei, Sa-Ngiamsak Chiranut, “Biasing technique of MOSFET for an accurate and real-time-readout radiation sensor,” J. East Asian Stud., no. 16, pp. 175 – 183, Apr. 2018.
    Retrieved from: http://petit.lib.yamaguchi-u.ac.jp/G0000006y2j2/file/27439/20180509100641/D300016000011.pdf
    Retrieved on: Jul. 12, 2019
  3. G. Mitev, S. S. Jordanova, M. G. Mitev, “Enhanced Read-out Systems for RADFET dosimeters research,” Anu. J. Electron., pp. 250 – 253, 2015.
    Retrieved from: http://ecad.tu-sofia.bg/et/2015/ET2015/AJE-2015/250_Paper-M_Mitev.pdf
    Retrieved on: Jul. 21, 2019
  4. S. Kaya, A. Jaksic, R. Duane, N. Vasovic, E. Yilmaz, “FET-based radiation sensors With Er2O3 gate dielectric,” Nucl. Instrum. Methods Phys. Res., vol. 430, pp. 36 – 41, Sep. 2018.
    Retrieved from: https://www.varadis.com/wp-content/uploads/2019/06/1-s2.0-S0168583X18303835-main.pdf
    Retrieved on: Aug. 18, 2019
  5. G. S. Ristic, N. D. Vasovic, M. Kovacevic, A. B. Jaksic, “The sensitivity of 100 nm RADFETs with zero gate bias up to dose of 230 Gy(Si),” Nucl. Instrum. Methods Phys. Res., vol. 269, no. 23, pp. 2703 – 2708, Dec. 2011.
    DOI: 10.1016/j.nimb.2011.08.015
  6. Medium-density performance line ARM®-based. 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 com. Interfaces, STMicroelectronics, Geneva, Switzerland, 2015.
    Retrieved from: https://www.st.com/resource/en/datasheet/stm32f103c8.pdf
    Retrieved on: Jan. 27, 2019
  7. N. D. Vasovic, G. S. Ristic, “A new microcontroller-based RADFET dosimeter reader,” Radiat. Meas., vol. 47, no. 4, pp. 272 – 276, Apr. 2012.
    DOI: 10.1016/j.radmeas.2012.01.017


Yasmin Sarhan, Wael Badawy, Marina Frontasyeva, Wafaa Arafa, Abd ElAzeem Hussein, Hussein El-samman

Pages: 125–130

DOI: 10.37392/RapProc.2019.25

A comprehensive characterization of the biomonitoring of air pollution assessment using Eucalyptus Globulus and Ficus Nitida plants in Cairo and Minoufia cities in Egypt is given. The concentrations (ppm) of thirty-two elements were determined in 30 leaf samples by means of the epithermal neutron activation analytical technique. The collected samples were irradiated by epithermal neutrons at REGATA -pulsed reactor IBR-2 in Dubna, Russian Federation. The obtained concentrations of; Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Sb, I, Cs, Ba, La, Sm, Tb, Hf, Ta, Au, Th, and U were compared to the reference plant. The analysis of the obtained concentrations revealed that the concentrations at some sites in Menoufia Governorate were significantly higher than those in Cairo, in spite of the intense population, heavy traffic, and vehicle waste disposed in Cairo. The remarkable increase of metals in Menoufia Governorate has occurred most probably due to the uncontrolled disposal of industrial and domestic waste. In addition, the study shows the Ficus Nitida plant responsiveness to metals is higher than Eucalyptus Globulus.
  1. P. L. Kinney, “Climate change, air quality, and human health,” Am. J. Prev. Med., vol. 35, no. 5, pp. 459 – 467, Nov. 2008.
    DOI: 10.1016/j.amepre.2008.08.025
    PMid: 18929972
  2. M. Brauer et al., “Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution,” Environ. Sci. Technol., vol. 46, no. 2, pp. 652 – 660, Jan. 2012.
    DOI: 10.1021/es2025752
    PMid: 22148428
    PMCid: PMC4043337
  3. K. H. Kim, E. Kabir, S. Kabir, “A review on the human health impact of airborne particulate matter,” Environ. Int., vol. 74, pp. 136 – 143, Jan. 2015.
    DOI: 10.1016/j.envint.2014.10.005
    PMid: 25454230
  4. A. Yalaltdinova, J. Kim, N. Baranovskaya, L. Rikhvanov, “Populus nigra L. as a bioindicator of atmospheric trace element pollution and potential toxic impacts on human and ecosystem,” Ecol. Indic., vol. 95, pp. 974 - 983, Dec. 2018.
    DOI: 10.1016/j.ecolind.2017.06.021
  5. S. V. Gorelova, M. V. Frontasyeva, "The Use of Higher Plants in Biomonitoring and Environmental Bioremediation," in Phytoremediation, vol. 5, A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, L. Newman, Eds., New York (NY), USA: Springer Int. Publ., 2017, ch. 5, sec. 5.3, pp. 103 - 156.
    Retrieved from:
    Retrieved on: Apr. 15, 2019
  6. A. A. Shaltout, M. I. Khoder, A. A. El-Abssawy, S. K. Hassan, D. L. Borges, “Determination of rare earth elements in dust deposited on tree leaves from Greater Cairo using inductively coupled plasma mass spectrometry,” Environ. Pollut., vol. 178, pp. 197 – 201, Jul. 2013.
    DOI: 10.1016/j.envpol.2013.03.044
    PMid: 23583939
  7. P. H. Freer-Smith, A. A. El-Khatib, G. Taylor, “Capture of Particulate Pollution by Trees: A Comparison of Species Typical of Semi-Arid Areas (Ficus Nitida and Eucalyptus Globulus) with European and North American Species,” Water, Air, Soil Pollut., vol. 155, no. 1 - 4, pp. 173 – 187, Jun. 2004.
    DOI: 10.1023/B:WATE.0000026521.99552.fd
  8. A. A. El-Khatib, F. A. Faheed, M. M. Azooz, “Physiological response of Eucalyptus rostrata to heavy metal air pollution,” El-Minia Sci. Bull., vol. 15, no. 2, pp. 429 – 451, 2004.
    Retrieved from: https://www.academia.edu/27489910/Physiological_response_of_Eucalyptus_rostorata_to_heavy_metal_air_pollution
    Retrieved on: Apr. 5, 2019
  9. M. V. Frontasyeva, “NAA for Life Sciences at Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research in Dubna,” Ecol. Chem. Eng. S, vol. 18, no. 3, pp. 281 - 304, 2011.
    Retrieved from: http://tchie.uni.opole.pl/freeECE/S_18_3/Frontasyeva_18(S3).pdf
    Retrieved on: Apr. 5, 2019
  10. M. Tomašević, M. Aničić, Lj. Jovanović, A. Perić-Grujić, M. Ristić, “Deciduous tree leaves in trace elements biomonitoring: A contribution to methodology,” Ecol. Indic., vol. 11, no. 6, pp. 1689 – 1695, Nov. 2011.
    DOI: 10.1016/j.ecolind.2011.04.017
  11. W. M. Badawy et al., “Instrumental neutron activation analysis of soil and sediment samples from Siwa Oasis, Egypt,” Phys. Part. Nucl. Lett., vol. 12, no. 4, pp. 637 – 644, Jul. 2015.
    DOI: 10.1134/S154747711504007X
  12. M. V. Frontasyeva, “Neutron activation analysis in the life sciences,” Phys. Part. Nucl., vol. 42, no. 2, pp. 332 – 378, Mar. 2011.
    DOI: 10.1134/S1063779611020043
  13. M. V. Frontasyeva, S. S. Pavlov, Analytical investigations at the ibr-2 reactor in Dubna, Rep. JINR-E--14-2000-177, Jt. Inst. Nucl. Res, Dubna, Russia, 2000.
    Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
    Retrieved on: Nov. 3, 2019
  14. A. I. Madadzada et al., “Assessment of atmospheric deposition of major and trace elements using neutron activation analysis and GIS technology: Baku - Azerbaijan,” Microchem. J., vol. 147, pp. 605 – 614, Jun. 2019.
    DOI: 10.1016/j.microc.2019.03.061
  15. A. Kabata-Pendias, H. Pendias, Trace Elements in Soils and Plants, 3rd ed., Boca Raton (FL), USA: CRC Press, 2001.
    Retrieved from: http://base.dnsgb.com.ua/files/book/Agriculture/Soil/Trace-Elements-in-Soils-and-Plants.pdf
    Retrieved on: Jun. 14, 2019
  16. M. Almeida-Silva, N. Canha, M. C. Freitas, H. M. Dung, I. Dionísio, “Air pollution at an urban traffic tunnel in Lisbon, Portugal: an INAA study,” Appl. Radiat. Isot., vol. 69, no. 11, pp. 1586 – 1591, Nov. 2011.
    DOI: 10.1016/j.apradiso.2011.01.014
    PMid: 21288730
  17. L. Qi et al., “Source identification of trace elements in the atmosphere during the second Asian Youth Games in Nanjing, China: Influence of control measures on air quality,” vol. 7, no. 3, pp. 547 – 556, May 2016.
    DOI: 10.1016/j.apr.2016.01.003
  18. Natural and Anthropogenic Sources of Trace Elements in the Environment, USGS, Reston (VA), USA.
    Retrieved from: http://www.cprm.gov.br/publique/media/gestao_territorial/geologia_medica/natural_anthropogenic_sources.pdf
    Retrieved on: Apr. 18, 2019
  19. S. Zhou et al., “Trace metals in atmospheric fine particles in one industrial urban city : spatial variations, sources, and health implications,” J. Environ. Sci., vol. 26, no. 1, pp. 205 – 213, Jan. 2014.
    DOI: 10.1016/s1001-0742(13)60399-x
    PMid: 24649708
  20. S. Wilbur et al., “Potential for human exposure,” in Toxicological Profile for Chromium, Atlanta (GA), USA: Agency for Toxic Subst. Dis. Regist., 2012, ch. 6, pp. 363 – 399.
    Retrieved from: https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf
    Retrieved on: Sep. 12, 2019
  21. S. Hoornaert, H. van Malderen, R. van Grieken, “Gypsum and Other Calcium-Rich Aerosol Particles above the North Sea,” Environ. Sci. Technol., vol. 30, no. 5, pp. 1515 – 1520, Apr. 1996.
    DOI: 10.1021/es9504350
  22. B. Markert, “Establishing of ‘Reference Plant’ for inorganic characterization of different plant species by chemical fingerprinting,” Water, Air, Soil Pollut., vol. 64, no. 3 - 4, pp. 533 – 538, Sep. 1992.
    DOI: 10.1007/BF00483363
  23. B. Markert, “Instrumental multi-element analysis in plant materials: A modern method in environmental chemistry and tropical systems research,” Environ. Geochem. Trop., pp. 75 - 95, Apr. 2006.
    DOI: 10.1007/BFb0010907
  24. A. Kabata-Pendias, H. Pendias, Trace Elements in Soils and Plants, 2nd ed., Boca Raton (FL), USA: CRC Press, 1992.
    Retrieved from: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1609922
    Retrieved on: Apr. 30, 2019


Maria da Conceição Costa Pereira, Tufic Madi Filho, José Roberto Berretta, Lucas Faustino Tomaz, Miriam Nieri Madi

Pages: 131–135

DOI: 10.37392/RapProc.2019.26

Scintillators are materials that convert the energy of ionizing radiation into a flash of light. Due to the existence of different types of scintillators, they are classified into three groups according to their physicochemical characteristics, namely, inorganic, organic and gaseous scintillators. Among the inorganic crystals, the most frequently used as scintillator consist of alkali metals, in particular alkaline iodides. Scintillation materials have many applications, for instance in medical imaging, security, physics, biology, non-destructive inspection and medicine. In this study, lithium doped CsI scintillator crystals were grown using the vertical Bridgman technique. The concentration of the lithium doping element (Li) studied was 10-4 M to 10-1 M. Analyses were carried out to evaluate the developed scintillators with regard to luminescence emission and optical transmittance. The luminescence emission spectra of these crystals were measured with a monochromator for gamma radiation from 137Cs source excitation. The determination of the dopant distribution along the crystalline axis allowed the identification of the region with Li concentration uniformity, which is the region of the crystalline volume indicated for use as a radiation detector. The crystals were excited with neutron radiation from AmBe source, with the energy range of 1 MeV to 12 MeV. As neutron sources also generate gamma radiation, which can interfere with the measurement, it is necessary that the detector be able to discriminate the presence of such radiation. Accordingly, experiments were performed using gamma radiation in the energy range of 59 keV to 1333 keV in order to verify the ability of the detector to discriminate the presence of different types of radiation.
  1. C. W. E. Eijk, “Inorganic-scintillator development,” Nucl. Inst. Methods Phy. Res., vol. 460, no. 1, pp. 1 - 14, Mar. 2001.
    DOI: 10.1016/S0168-9002(00)01088-3
  2. T. Yanagida, “Inorganic scintillating materials and scintillation detectors,” Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., vol. 94, no. 2, pp. 75 - 97, Feb. 2018.
    DOI: 10.2183/pjab.94.007
    PMid: 29434081
    PMCid: PMC5843761
  3. G. F. Knoll, Radiation Detection and Measurement, 4th ed., New York (NY), USA: J. Wiley & Sons, 2010.
    Retrieved from:
    Retrieved on: Jun. 17, 2019
  4. N. Tsoulfanidis, Measurement and detection of radiation, 1st ed., New York (NY), USA: McGraw-Hill, 1983.
    Retrieved from: https://trove.nla.gov.au/work/24937117?q&sort=holdings+desc&_=1574102120578&versionId=30083295#get
    Retrieved on: Jan. 27, 2019
  5. C. Dujardin et al., Needs, Trends, and Advances in Inorganic Scintillators,” IEEE Trans. Nucl. Sci., vol. 65, no. 8, pp. 1977 - 1997, Aug. 2018.
    DOI: 10.1109/TNS.2018.2840160
  6. A. Pushak et al., “Luminescent properties of BaCl2-Eu microcrystals embedded in a CsI matrix,” Radiat. Meas., vol. 56, pp. 402 - 406, Sep. 2013.
    DOI: 10.1016/j.radmeas.2013.01.071
  7. D. M. Slaughter, C. R.Stuart, R. F. Klaass, D. B. Merrill, “Performance of Large Neutron Detectors Containing Lithium-Gadolinium-Borate Scintillator,” IEEE Trans. Nucl. Sci., vol. 63, no. 3, pp. 1650 – 1658, Jun. 2016.
    DOI: 10.1109/TNS.2016.2561240
  8. K. Yang, P. R. Menge, V. Ouspenski, “Li Co-Doped NaI:Tl (NaIL)—A Large Volume Neutron-Gamma Scintillator With Exceptional Pulse Shape Discrimination,” IEEE Trans. Nucl. Sci., vol. 64, no. 8, pp. 2406 - 2413, Jun. 2017.
    DOI: 10.1109/TNS.2017.2721398
  9. P. W. Bridgman, “The Effect of Tension on the Transverse and Longitudinal Resistance of Metals,” Proc. Amer. Acad. Arts Sci., vol. 60, no. 8, pp. 423 - 449, Oct. 1925.
    DOI: 10.2307/25130064
  10. K. Kliemt, C. Krellner, “Crystal growth by Bridgman and Czochralski method of the ferromagnetic quantum critical material YbNi4P2,” J. Cryst. Growth, vol. 449, pp. 129 - 133, Sep. 2016.
    DOI: 10.1016/j.jcrysgro.2016.05.042
  11. 11. V. B. Mikhailik, V. Kapustyanyk, V. Tsybulskyi, V. Rudyk, H. Kraus, “Luminescence and scintillation properties of CsI: A potential cryogenic scintillator,” Phys. Status Solidi B, vol. 252, no. 4, pp. 804 - 810, Jan. 2015.
    DOI: 10.1002/pssb.201451464
  12. 12. B. D. Milbrath, A. J. Peurrung, M. Bliss, W. J. Weber, “Radiation detector materials: An overview,” J. Mater. Res., vol. 23, n0. 10, pp. 2561 - 2581, Oct. 2008.
    DOI: 10.1557/JMR.2008.0319
  13. 13. M. Korzhik et al., “Detection of neutrons in a wide energy range with crystalline Gd3Al2Ga3O12, Lu2SiO5 and LaBr3 doped with Ce scintillators,” Nucl. Inst. Meth. Phy. Res., vol. 931, pp. 88 - 91, Jul. 2019.
    DOI: 10.1016/j.nima.2019.04.034


Kemal Firat Oguz, Mehmet Yüksel

Pages: 136–138

DOI: 10.37392/RapProc.2019.27

Thermoluminescence dosimeters have been an important tool for measuring the ionizing radiation dose in the field of personal, clinical, environmental and space applications. In this study, thermoluminescence glow curves of newly synthesized Mg,Cu,P doped LiF (TLD-100H) were recorded using four different filters in order to investigate the effect of different filter packs on TL glow peaks. It was observed that the TLD-100H dosimeter has four TL glow peaks at 100 oC, 150 oC, 200 oC and 260 oC for the heating rate value of 1 °C/s. Additionaly, the minimum detectable dose of the TLD-100H dosimeter for a TL peak of 260 oC has been determined using the thermoluminescence method as a preliminary work.
  1. K. F. Oguz et al., “Study of luminescence of Mn-doped CaB4O7 prepared by wet chemical method”, J. Alloys Compd., vol. 683, no. C, pp. 76 – 85, May 2016.
    DOI: 10.1016/j.jallcom.2016.05.050
  2. T. Nakajima, Y. Murayama, T. Matsuzawa, A. Koyano, “Development of a new highly sensitive LiF thermoluminescence dosimeter and its applications”, Nucl. Instrum. Methods, vol. 157, no. 1, pp. 155 – 162, Nov. 1978.
    DOI: 10.1016/0029-554X(78)90601-8
  3. P. Bilski et al., “Characteristics of LiF:Mg,Cu,P thermoluminescence at ultra-high dose range,” Radiat. Meas., vol. 43, no. 2 – 6, pp. 315 – 318, Feb.-Jun. 2008.
    DOI: 10.1016/j.radmeas.2007.10.015
  4. B. Ben-Shachar, M. Weinstein, U. German, “LiF:Mg, Cu, P vs LiF:Mg, Ti: A comparıson of some dosımetrıc propertıes,” in Proc. 20th Conf. Nucl. Soc. Isr. (INS), Dead Sea, Israel, 1999, pp. 181 – 184.
    Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/049/31049561.pdf
    Retrieved on: May 31, 2019
  5. K. Remy, S. Sholom, B. Obryk, S. W. S. McKeever, “Optical absorption in LiF, LiF:Mg, LiF:Mg,Cu,P irradiated with high gamma and beta doses,” Radiat. Meas., vol. 106, pp. 113 – 117, Nov. 2017.
    DOI: 10.1016/j.radmeas.2016.11.007
  6. S. P. Voss et al., “Effect of TLD-700H (LiF: Mg, Cu, P) sensitivity loss at multiple read-irradiation cycles on TLD reader calibration,” Radiat. Meas., vol. 46, no. 12, pp. 1590 – 1594, Dec. 2011.
    DOI: 10.1016/j.radmeas.2011.04.017
  7. M. Moscovitch, Y. S. Horowitz, “Thermoluminescent materials for medical applications: LiF:Mg,Ti and LiF:Mg,Cu,P,” Radiat. Meas., vol. 41, suppl. 1, pp. 71 – 77, Dec. 2006.
    DOI: 10.1016/j.radmeas.2007.01.008
  8. D. Richter, A. Richter, K. Dornich, “Lexsyg smart — a luminescence detection system for dosimetry, material research and dating application,” Geochronometria, vol. 42, no. 1, pp. 202 – 209, Dec. 2015.
    DOI: 10.1515/geochr-2015-0022
  9. C. Furetta, M. Prokic, R. Salamon, G. Kitis, “Dosimetric characterisation of a new production of MgB4O7:Dy,Na thermoluminescent material,” Appl. Radiat. Isot., vol. 52, no. 2, pp. 243 – 250, Feb. 2000.
    DOI: 10.1016/s0969-8043(99)00124-4
    PMid: 10697735
  10. M. Yüksel, "Termolüminesans Yöntemi ve Dozimetrik Çalışmalar," içinde Fen Bilimleri ve Matematik Temel Alanı Örnek Araştırmaları Kitabı, A. Yakar, H. Topalki, editörler, 1. baskı, Ankara, Türkiye: NOBEL Akade. Yayın., ss. 171 - 192, Kasım 2018. (M. Yüksel, “Thermoluminescence Method and Dosimetric Studies,” in Science and Mathematics Basic Field Sample Research Book, A. Yakar, H. Topalki, Eds., 1st ed., Ankara, Turkey: NOBEL Acad. Publ., pp. 171 – 192, Nov. 2018.)
    Retrieved from: https://www.nobelyayin.com/detay.asp?u=15124
    Retrieved on: May 25, 2019
  11. M. Yüksel, “Thermoluminescence and dosimetric characteristics study of quartz samples from Seyhan Dam Lake Terraces”, Can. J. Phys., vol. 96, no. 7, pp. 779 - 783, Jul. 2018.
    DOI: 10.1139/cjp-2017-0741


Bugra Kocaman, Mehmet Kopru, Bekir Solak, Murat Harmandali, Eylem Guven, Ercan Yilmaz

Pages: 139–144

DOI: 10.37392/RapProc.2019.28

The novel domestic radiation sensors — called “NürFETs” —can be used to measure Total Ionizing Dose (TID) on the mission orbit. NürFET responses are compared with two different sensors on the market with demonstrated performance. The radiation detector reader has been designed by the Space Technologies Research Institute (TUBITAK UZAY) and named MURaD and it contains three distinctive sensors, namely the aforementioned Nuclear Radiation Sensing Field Effect Transistor (NürFET), the p-channel RADFET, and the Floating Gate Dosimeter (FGDOS), respectively. They are used to measure TID comparatively and separately. The whole radiation module contains three different sensors which are exposed to gamma radiation on the ground via a Co-60 source and the functional and/or parametric test results are presented.
  1. N. Bhat, J. Vasi, “Interface-state generation under radiation and high-field stressing in reoxidized nitrided oxide MOS capacitors,” IEEE Trans. Nucl. Sci., vol. 39, no. 6, pp. 2230 - 2235, Dec. 1992.
    DOI: 10.1109/23.211425
  2. L. Adams, A. Holmes-Siedle, “The Development of an MOS Dosimetry Unit for Use in Space,” IEEE Trans. Nucl. Sci., vol. 25, no. 6, pp. 1607 – 1612, Dec. 1978.
    DOI: 10.1109/TNS.1978.4329580
  3. S. Kaya, E. Yilmaz, “Use of BiFeO3 layer as a dielectric in MOS based radiation sensors fabricated on a Si substrate,” Nucl. Instrum. Methods Phys. Res., vol. 319, pp. 168 - 170, Jan. 2014.
    DOI: 10.1016/j.nimb.2013.10.016
  4. E. R. Benton, E. V. Benton, “Space radiation dosimetry in low-Earth orbit and beyond,” Nucl. Instrum. Methods Phys. Res. Sec. B, vol. 184, no. 1–2, pp. 255 - 294, Sep. 2001.
    DOI: 10.1016/S0168-583X(01)00748-0
    PMid: 11863032
  5. S. Kaya, A. Jaksic, R. Duane, N. Vasovic, E. Yilmaz, “FET-based radiation sensors with Er2O3 gate dielectric,” Nucl. Instrum. Methods Phys. Res. B, vol. 430, pp. 36 - 41, Sep. 2018.
    DOI: 10.1016/j.nimb.2018.06.007
  6. E. Garcia-Moreno et al., “Floating Gate CMOS Dosimeter With Frequency Output,” IEEE Trans. Nucl. Sci., vol. 59, no. 2, pp. 373 - 378, Apr. 2012.
    DOI: 10.1109/TNS.2012.2184301
  7. G. Spiezia et al., “A New RadMon Version for the LHC and its Injection Lines,” ,” IEEE Trans. Nucl. Sci., vol. 61, no. 6, pp. 3424 - 3431, Dec. 2014.
    DOI: 10.1109/TNS.2014.2365046
  8. R. Ferraro et al., “Design of a radiation tolerant system for total ionizing dose monitoring using floating gate and RadFET dosimeters,” J. Instrum., vol. 12, no. 4, Apr. 2017.
    DOI: 10.1088/1748-0221/12/04/C04007
  9. M. Brucoli et al., “A complete qualification of floating gate dosimeter for CERN applications,” in Proc. 16th Eur. Conf. Radiation and Its Effects on Comp. Syst. (RADECS), Bremen, Germany, 2016.
    DOI: 10.1109/RADECS.2016.8093162
  10. S. Dahiya, K. Kumar, “Drain Current and Radiation Relation for MOSFET,” Int. res. j. eng. tech., vol. 4, no. 5, pp. 1509 - 1511, May 2017.
    Retrieved from: https://www.irjet.net/archives/V4/i5/IRJET-V4I5435.pdf
    Retrieved on: Aug. 11, 2019
  11. M. M. Pejovic, “Processes in radiation sensitive MOSFETs during irradiation and post irradiation annealing responsible for threshold voltage shift,” Radiat. Phys. Chem., vol. 130, pp. 221 – 228, Jan. 2017.
    DOI: 10.1016/j.radphyschem.2016.08.027
  12. Nisha, R. Yadav, “Radiation Effect on MOSFET at Deep Submicron Technology,” Int. J. Adv. Res. Computer Sci. Software Eng., vol. 3, no. 8, pp. 162–173, August 2013.
    Retrieved from: http://ijarcsse.com/Before_August_2017/docs/papers/Volume_3/8_August2013/V3I7-0560.pdf
    Retrieved on: Aug. 11, 2019
  13. S. Stanic et al., “Radiation monitoring in Mrad range using radiation-sensing field-effect transistors,” Nucl. Instrum. Methods Phys. Res. Sec. A, vol. 545, no. 1-2, pp. 252 – 260, Jun. 2005.
    DOI: 10.1016/j.nima.2005.01.347
  14. J. Cesari, A. Barbancho, A. Pineda, G. Ruy, H. Moser, “Floating Gate Dosimeter Measurements at 4M Lunar Flyby Mission,” in Proc. IEEE Radiation Effects Data Workshop (REDW), Boston (MA), USA, 2015.
    DOI: 10.1109/REDW.2015.7336710
  15. S. Danzeca et al., “Characterization and Modeling of a Floating Gate Dosimeter with Gamma and Protons at Various Energies,” IEEE Trans. Nucl. Sci., vol. 61, no. 6, pp. 3451 – 3457, Nov. 2014.
    DOI: 10.1109/TNS.2014.2364274
  16. Radiation Sensor Information, iC Malaga, Alaró, Spain, 2019.
    Retrieved from: http://www.ic-malaga.com/servicios_rad_en.html;
    Retrieved on: Aug. 11, 2019
  17. Sarayköy nükleer araştırma ve eğitim merkezi - Tanitim kitabi, Türkiye atom enerjisi kurumu, Ankara, Türkiye, 2012. (Sarayköy nuclear research and training center – Promotion book, Turkey atomic energy agency, Ankara, Turkey, 2012.)
    Retrieved from: http://www.taek.gov.tr/tr/belgeler-formlar/sanaem/SANAEM-Tanıtım-Kitabı/lang,tr-tr/
    Retrieved on: Aug. 12, 2019


Ercan Yilmaz, Emre Doganci, Farid Ahmadov, Gadir Ahmadov, Azar Sadigov, Samir Suleymanov

Pages: 145–147

DOI: 10.37392/RapProc.2019.29

The Silicon PIN photodiodes (Si-PIN) with an active area of 5.0 x 5.0 mm2 were designed and fabricated by using a conventional photolithography process at the Center of Nuclear Radiation Detectors Research and Application (NÜRDAM) for the investigation of electrical characteristics and alpha particle detection performance. To obtain the device electrical specifications, the current-voltage (I-V) and the capacitance-voltage (C-V) measurements were carried out in the photoconductive mode. The Si-PIN photodiode was then used to detect alpha particles from different radioactive sources in a vacuum at room temperature. Photodiode dark current and capacitance were measured and found to be - 20 nA and 23pF, respectively, at -20 Volts (the operating voltage used during alpha particle detection). The possibilities of improving the parameters of the photodiode are discussed.
  1. M. Daraee, A. Araghi, M. Sadeghi, A. Hashemizadeh, “Investigation of thermal treatment on improving the performance behavior of Si PIN alpha radiation detectors,’’ Optik, vol. 184, pp. 364 - 369, May 2019.
    DOI: https://doi.org/10.1016/j.ijleo.2019.04.116
  2. S. M. Ahmed, Physic and Engineering of Radiation Detection, London, UK: Academic Press, 2007.
    Retrieved from: http://bookfi.net/dl/1085949/a947a5
    Retrieved on: May 10, 2019
  3. H. Tan, T. A. DeVol, “Development of a flow-cell alpha detector utilizing microencapsulated CsI: Tl granules and silicon PIN-photodiodes,’’ in 2001 IEEE Nucl. Sci. Sympos. Conf. Rec., San Diego (CA), USA, 2011, pp. 375 - 379.
    Retrieved from: https://ieeexplore.ieee.org/abstract/document/1008480
    Retrieved on: Sep. 10, 2019
  4. V. Drndaravic, “A very low-cost alpha-particle spectrometer,’’ Meas. Sci. Technol., vol. 19, no. 5, Apr. 2008.
    DOI: 10.1088/0957-0233/19/5/057001
  5. S. Srivastava, R. Henry, A. Topkar, ’’Characterization Of Pin Diode Silicon Radiation Detector,’’ J. Intel. Electron. Syst., vol. 1, no. 1, pp. 47 - 51, Nov. 2007.
    Retrieved from: https://scholar.google.com.tr/scholar?hl=tr&as_sdt=0%2C5&q=Characterization+Of+Pin+Diode+Silicon+Radiation+Detector& btnG=
    Retrieved on: Sep. 1, 2019
  6. K. Yamamoto, Y. Fuji, Y. Kotooka, T. Katayama, “Highly stable silicon pin photodiode,’’ Nucl. Instrum. Methods Phys. Res., vol. 253, no. 3, pp. 542 - 547, Jan. 1987.
    DOI: 10.1016/0168-9002(87)90545-6
  7. N. V. Loukianova et al., “Leakage current modeling of test structures for characterization of dark current in CMOS image sensors,’’ IEEE Trans. Electron Devices, vol. 50, no. 1, pp. 77 - 83, Jan. 2003.
    DOI: 10.1109/Ted.2002.807249
  8. M. Suzuki et al., “Electrical characterization of diamond PiN diodes for high voltage applications,’’ Phys. Status Solidi A, vol. 210, no. 10, pp. 2035 – 2039, Jul. 2013.
    DOI: 10.1002/pssa.201300051
  9. A. O. Goushcha, R. A. Metzler, C. Hicks, V. N. Kharkyanen, N. M. Berezetska, “Determination of the carrier collection efficiency function of Si photodiode using spectral sensitivity measurements,’’ in Book of Abstr. Integr. Optoelectron. Devices 2004, San Jose (CA), US, 2004.
    DOI: 10.1117/12.528361


Nikola Kržanović, Annette Röttger, Viacheslav Morosh, Maksym Luchkov, Stefan Neumaier

Pages: 148–151

DOI: 10.37392/RapProc.2019.30

Concerning ionising radiation monitoring in the environment in areas which, by normal means, are inaccessible, e.g. in contaminated areas after a nuclear or radiological incident, the use of highly mobile systems, comprising of unmanned airborne vehicles equipped with ionising radiation detector, is advised in order to protect the health and the life of first responders. As a promising candidate, the compact solid-state spectrometer based on CdZnTe is characterised by performing irradiations in the reference radionuclide radiation fields of PTB. The energy-dependent conversion coefficients are derived from recorded pulse-height spectra, and they enable calculation of the operational radiation protection quantity, ambient dose equivalent rate, directly from the spectrum without deconvolution. The validity of the conversion coefficients was evaluated by determining the deviation of the calculated dose rate from the reference ambient dose equivalent rate for the 226Ra radionuclide, available at the Underground Dosimetry Laboratory (UDO II) of PTB. By employing the derived conversion coefficients, the detector “linearity” (dose rate dependence of the response) was checked in the 137Cs reference fields of different ambient dose equivalent rates ranging from 25 nSv/h up to 1 μSv/h. The deviation of the calculated 226Ra dose rate from the achieved reference value was +2%.
  1. S. Neumaier, H. Dombrowski, “EURADOS intercomparisons and the harmonisation of environmental radiation monitoring,” Radiat. Prot. Dosim, vol. 160, no. 4, pp. 297 – 305, Aug. 2014.
    DOI: 10.1093/rpd/ncu002
    PMid: 24497552
  2. Radiological maps, Real-time monitoring, European Commission Joint Research Centre (EC JRC), Brussels, Belgium.
    Retrieved from: https://remap.jrc.ec.europa.eu/
    Retrieved on: Jul. 12, 2019.
  3. N. Kržanović, K. Stanković, M. Živanović, M. Đaletić, O. Ciraj-Bjelac, “Development and testing of a low cost radiation protection instrument based on an energy compensated Geiger-Müller tube,” Radiat. Phys. Chem., vol. 164, Nov. 2019.
    DOI: 10.1016/j.radphyschem.2019.108358
  4. GR1 CZT gamma-ray detector spectrometer, Kromek Group plc, Zelienople (PA), USA.
    Retrieved from: https://www.kromek.com/product/gamma-ray-detector-spectrometers-czt-based-gr-range/
    Retrieved on: Jul. 10, 2019.
  5. C. Szeles, “CdZnTe and CdTe materials for X‐ray and gamma ray radiation detector applications,” Phys. Status Solidi, vol. 241, no. 3, pp. 783 – 790, Mar. 2004.
    DOI: 10.1002/pssb.200304296
  6. M. M. Be et al., Table of Radionuclides (Vol. 8 – A = 41-198), BIPM, Paris, France, 2016.
    Retrieved from: https://www.bipm.org/utils/common/pdf/monographieRI/Monographie_BIPM-5_Tables_Vol8.pdf
    Retrieved on: Jun. 15, 2019
  7. H. Dombrowski, “Area dose rate values derived from NaI or LaBr3 spectra,” Radiat. Prot. Dosim., vol. 160, no. 4, pp. 269 – 276, Aug. 2014.
    DOI: 10.1093/rpd/nct349
    PMid: 24478307
  8. P. Kessler, B. Behnke, H. Dombrowski, S. Neumaier, “Characterization of detector-systems based on CeBr­­3, LaBr3, SrI2 and CdZnTe for the use as dosemeters,” Radiat. Phys. Chem., vol. 140, pp. 309 – 313, Nov. 2017.
    DOI: 10.1016/j.radphyschem.2016.12.015
  9. P. Kessler et al., “Novel spectrometers for environmental dose rate monitoring,” J. Environ. Radioact., vol. 187, pp. 115 – 121, Jul. 2018.
    DOI: 10.1016/j.jenvrad.2018.01.020
    PMid: 29455914
  10. A. Röttger, P. Kessler, “Uncertainties and characteristic limits of counting and spectrometric dosimetry systems,” J. Environ. Radioact., vol. 205 – 206, pp. 48 – 54, Sep. 2019.
    DOI: 10.1016/j.jenvrad.2019.04.012 PMid: 31102905

Radiation Effects


Aysegul Kahraman, Berk Morkoc, Alex Mutale, Umutcan Gurer, Ercan Yilmaz

Pages: 152–155

DOI: 10.37392/RapProc.2019.31

The aim of this study is to investigate the structural transformations of erbium oxide (Er2O3) dielectric which can be used as a sensitive region in the new generation RadFET radiation sensors under a high gamma dose. The Er2O3 film was grown on n-type Si (100) by RF magnetron sputtering and film thickness was measured as 118 nm. The samples were irradiated by a 60Co radioactive source with the doses of 1 kGy, 25 kGy, and 50 kGy. The crystal structure samples were analysed by the X-ray diffraction method. The variation in the bond properties of the as-deposited Er2O3 film was investigated by X-ray photoelectron spectroscopy. The pre-irradiation Er2O3 film demonstrated an amorphous structure, and the peaks belonging to the cubic phase were observed after irradiation, their density increasing with increasing the dose. The Er 4d spectra of the Er2O3/Si films were two fitted peaks indicating Er-Er and Er-O bonds, except for the interface. The binding energy shifted to higher energies with increasing the depth from due to possible ErSiOx formation at the interface. The Si-O/Er-O and M/O ratios change with the applied dose and film depth.
  1. J. O. Goldsten et al., “The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission,” Space Sci. Rev., vol. 179, no. 1 – 4, pp. 485 – 502, Nov. 2013.
    DOI: 10.1007/s11214-012-9917-x
  2. M. M. Pejovic, M. M. Pejovic, A. B. Jaksic, “Contribution of fixed oxide traps to sensitivity of pMOS dosimeters during gamma ray irradiation and annealing at room and elevated temperature,” Sens. Actuator A-Phys., vol. 174, no. 1, pp. 85 – 90, Feb. 2012.
    DOI: 10.1016/j.sna.2011.12.011
  3. E. Yilmaz et al., “Investigation of RadFET response to X-ray and electron beams,” Appl. Radiat. Isot., vol. 127, pp. 156 – 160, Sep. 2017.
    DOI: 10.1016/j.apradiso.2017.06.004
    PMid: 28622597
  4. S. J. Rhee, J. C. Lee, “Threshold voltage instability characteristics of HfO2 dielectrics n-MOSFETs,” Microelectron. Reliab., vol. 45, no. 7 – 8, pp. 1051 – 1060, Jul.-Aug. 2005.
    DOI: 10.1016/j.microrel.2005.01.006
  5. G. Thriveni, K. Ghosh, “Performance analysis of nanoscale double gate strained silicon MOSFET with high k dielectric layers,” Mater. Res. Express, vol. 6, no. 8, May 2019.
    DOI: 10.1088/2053-1591/ab1fca
  6. A. Kahraman, E. Yilmaz, “Proposal of alternative sensitive region for MOS based radiation sensors: Yb2O3,” J. Vac. Sci. Technol., vol. 35, no. 6, p. 061511, Nov. 2017.
    DOI: 10.1116/1.4993545
  7. A. Kahraman, E. Yilmaz, A. Aktag, S. Kaya, “Evaluation of Radiation Sensor Aspects of Er2O3 MOS Capacitors under Zero Gate Bias,” IEEE Trans. Nucl. Sci., vol. 63, no. 2, pp. 1284 – 1293, Apr. 2016.
    DOI: 10.1109/TNS.2016.2524625
  8. E. Yilmaz, B. Kaleli, R. Turan, “A systematic study on MOS type radiation sensors,” Nucl. Instrum. Methods Phys. Res., vol. 264, no. 2, pp. 287 – 292, Nov. 2007.
    DOI: 10.1016/j.nimb.2007.08.081
  9. E. Yilmaz, S. Kaya, “A Detailed Study on Zero-Bias Irradiation Responses of La2O3 MOS Capacitors,” IEEE Trans. Nucl. Sci., vol. 63, no. 2, pp. 1301 – 1305, Apr. 2016.
    DOI: 10.1109/TNS.2016.2530782
  10. J. I. Langford, A. J. C. Wilson, “Scherrer after sixty years: A survey and some new results in the determination of crystallite size,” J. Appl. Crystallogr., vol. 11, pp. 102 – 113, Apr. 1978.
    DOI: 10.1107/S0021889878012844
  11. S. Gokhale et al., “Photoemission and x-ray diffraction study of the ErSi(111) interface,” Surf. Sci., vol. 237, no. 1 – 3, pp. 127 – 134, Nov. 1990.
    DOI: 10.1016/0039-6028(90)90525-D
  12. R. Xu, Q. Tao, Y. Yang, C. G. Takoudis, “Atomic layer deposition and characterization of stoichiometric erbium oxide thin dielectrics on Si(100) using (CpMe)3Er precursor and ozone,” Appl. Surf. Sci., vol. 258, no. 22, pp. 8514 – 8520, Sep. 2012.
    DOI: 10.1016/j.apsusc.2012.05.019
  13. J. Zhang, H. Wong, D. Yu, K. Kakushima, H. Iwai, “X-ray photoelectron spectroscopy study of high-k CeO2/La2O3 stacked dielectrics,” AIP Adv., vol. 4, no. 11, Nov. 2014.
    DOI: 10.1063/1.4902017
  14. Z. Guo et al., “Solution-processed ytterbium oxide dielectrics for low-voltage thin-film transistors and inverters,” Ceram. Int., vol. 43, no. 17, pp. 15194 – 15200, Dec. 2017.
    DOI: 10.1016/j.ceramint.2017.08.052
  15. C. H. Kao, H. Chen, Y. T. Pan, J. S. Chiu, T. C. Lu, “The characteristics of the high-K Er2O3 (erbium oxide) dielectrics deposited on polycrystalline silicon,” Solid State Commun., vol. 152, no. 6, pp. 504 – 508, Mar. 2012.
    DOI: 10.1016/J.SSC.2011.12.042
  16. G. S. Ristić, M. M. Pejović, A. B. Jakšić, “Physico-chemical processes in metal–oxide–semiconductor transistors with thick gate oxide during high electric field stress,” J. Non.-Cryst. Solids, vol. 353, no. 2, pp. 170 – 179, Feb. 2007.
    DOI: 10.1016/J.JNONCRYSOL.2006.09.020


Umutcan Gürer, Ercan Yilmaz

Pages: 156–161

DOI: 10.37392/RapProc.2019.32

In this study, the effects of gamma irradiation on the physical, electrochemical, and electrical properties of Dy2O3/p-Si thin films have been studied. For this, the rare earth oxide (Dy2O3) were deposited onto p-Si wafer by using an e-beam evaporation technique. The evolutions on the crystallographic and morphologic characteristics of the films under gamma irradiation were analyzed by X-ray diffraction (XRD) and Atomic Force Microscopy (AFM), respectively, while irradiation effects on the electrochemistry of the films were characterized by X-ray photoelectron spectroscopy (XPS). Furthermore, variations on the electrical characteristics of Dy2O3/p-Si thin films were also specified by Capacitance-Voltage (C-V) and Conductance-Voltage (G/ω-V) measurements. No significant changes on the crystallographic orientation were observed after gamma irradiation exposures. However, the grain size of the films was increased slightly due to the fact that the local heating aggregated the smaller grains into a bigger cluster. In addition, the surface roughness was increased after irradiation indicating that it deforms the films’ surface morphology. Two different intense intermixing phases revealed the presence of the electrochemical analysis of the virgin Dy2O3/p-Si thin films. These phases are Dysprosium sub-Oxide (DyxOy) and Oxygen deficient in Dy2O3 films. After irradiation exposures, Oxygen incorporation, vacancy, and interstitial defects formation were observed in the electrochemical characteristics of the films. On the other hand, the capacitance curves exhibit kinks in the region between depletion and accumulation due to the presence of the intermixing phases of Dy2O3 films. The capacitance of samples significantly increased with the increase of radiation doses, which are correlated with the generated interface state density and/or improvement of dielectric characteristics of Dy2O3 owing to Oxygen diffusion.
  1. F. B. Ergin, R. Turan, S. T. Shishiyanu, E. Yilmaz, “Effect of γ-radiation on HfO2 based MOS capacitor,” Nucl. Instrum. Methods Phys. Res., vol. 268, no. 9, pp. 1482 – 1485, May 2010.
    DOI: 10.1016/j.nimb.2010.01.027
  2. S. Kaya, E. Yilmaz, “A Comprehensive Study on the Frequency-Dependent Electrical Characteristics of Sm2O3 MOS Capacitors,” IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 980 – 987, Jan. 2015.
    DOI: 10.1109/TED.2015.2389953
  3. Y. Li et al., “Study of γ-ray irradiation influence on TiN/HfO2/Si MOS capacitor by C-V and DLTS,” Superlattice. Microst., vol. 120, pp. 313 – 318, Aug. 2018.
    DOI: 10.1016/j.spmi.2018.05.046
  4. G. D. Wilk, R. M. Wallace, J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243 – 5275, May 2001.
    DOI: 10.1063/1.1361065
  5. S. C. Chang, S. Y. Deng, J. Y. M. Lee, “Electrical characteristics and reliability properties of metal-oxide-semiconductor field-effect transistors with Dy2O3 gate dielectric,” Appl. Phys. Lett., vol. 89, no. 5, pp. 10 – 13, 2006.
    DOI: 10.1063/1.2217708
  6. A. Cherif et al., “The temperature dependence on the electrical properties of dysprosium oxide deposited on p-Si substrate,” Mater. Sci. Semicond. Process., vol. 29, pp. 143 – 149, Jan. 2015.
    DOI: 10.1016/j.mssp.2014.01.031
  7. M. Leskelä, K. Kukli, M. Ritala, “Rare-earth oxide thin films for gate dielectrics in microelectronics,” J. Alloys Compd., vol. 418, no. 1 – 2, pp. 27 – 34, Jul. 2006.
    DOI: 10.1016/j.jallcom.2005.10.061
  8. K. Xu et al., “Atomic Layer Deposition of Gd2O3 and Dy2O3: A Study of the ALD Characteristics and Structural and Electrical Properties,” Chem. Mater., vol. 24, no. 4, pp. 651 – 658, Feb. 2012.
    DOI: 10.1021/cm2020862
  9. A. Kahraman, E. Yilmaz, “Proposal of alternative sensitive region for MOS based radiation sensors: Yb2O3,” J. Vac. Sci. Technol. A, vol. 35, no. 6, Nov. 2017.
    DOI: 10.1116/1.4993545
  10. A. Kahraman, E. Yilmaz, “Irradiation response of radio-frequency sputtered Al/Gd2O3/p-Si MOS capacitors,” Radiat. Phys. Chem., vol. 139, pp. 114 – 119, Oct. 2017.
    DOI: 10.1016/j.radphyschem.2017.04.003
  11. A. Kahraman, E. Yilmaz, “A comprehensive study on usage of Gd2O3 dielectric in MOS based radiation sensors considering frequency dependent radiation response,” Radiat. Phys. Chem., vol. 152, pp. 36 – 42, Nov. 2018.
    DOI: 10.1016/j.radphyschem.2018.07.017
  12. S. Kaya, E. Yilmaz, A. Kahraman, H. Karacali, “Frequency dependent gamma-ray irradiation response of Sm2O3 MOS capacitors,” Nucl. Instrum. Methods Phys. Res., vol. 358, pp. 188 – 193, Sep. 2015.
    DOI: 10.1016/j.nimb.2015.06.037
  13. S. Abubakar, S. Kaya, H. Karacali, E. Yilmaz, “The gamma irradiation responses of yttrium oxide capacitors and first assessment usage in radiation sensors,” Sens. Actuator A-Phys., vol. 258, pp. 44 – 48, May 2017.
    DOI: 10.1016/j.sna.2017.02.022
  14. F. C. Chiu, “Electrical characterization and current transportation in metal ∕ Dy2O3 ∕ Si structure,” J. Appl. Phys., vol. 102, no. 4, Aug. 2007.
    DOI: 10.1063/1.2767380
  15. [ A. A. Dakhel, “Annealing effect on the dc transport mechanism in dysprosium oxide films grown on Si substrates,” J. Electron. Mater., vol. 35, no. 7, pp. 1547 – 1551, Jul. 2006.
    DOI: 10.1007/s11664-006-0147-4
  16. T. M. Pan, W. T. Chang, F. C. Chiu, “Structural properties and electrical characteristics of high-k Dy2O3 gate dielectrics,” Appl. Surf. Sci., vol. 257, no. 9, pp. 3964 – 3968, Feb. 2011.
    DOI: 10.1016/j.apsusc.2010.11.144
  17. M. Chakraverty, H. M. Kittur, “Comparison of tunnel currents through SiO2, HfO2, Ta2O5, ZrO2 and Dy2O3 dielectrics in MOS devices for ultra large scale integration using first principle calculations,” in Proc. 2013 Annu. Int. Conf. Emerg. Res. Areas (AICERA 2013) and 2013 Int. Conf. Microelectron. Commun. Renew. Energy (ICMiCR 2013), Kanjirapally, India, 2013.
    DOI: 10.1109/AICERA-ICMiCR.2013.6575936
  18. K. Lawniczak-Jablonska et al., “Surface morphology of DyxOy films grown on Si,” Appl. Surf. Sci., vol. 253, no. 2, pp. 639 – 645, Nov. 2006.
    DOI: 10.1016/j.apsusc.2005.12.150
  19. S. Kaya, I. Yıldız, R. Lok, E. Yılmaz, “Co-60 gamma irradiation influences on physical, chemical and electrical characteristics of HfO2/Si thin films,” Radiat. Phys. Chem., vol. 150, pp. 64 – 70, Sep. 2018.
    DOI: 10.1016/j.radphyschem.2018.04.023
  20. S. Kaya, E. Yilmaz, “Modifications of structural, chemical, and electrical characteristics of Er2O3/Si interface under Co-60 gamma irradiation,” Nucl. Instrum. Methods Phys. Res., vol. 418, pp. 74 – 79, Mar. 2018.
    DOI: 10.1016/j.nimb.2018.01.010
  21. M. Ishfaq et al., “Optical and electrical characteristics of 17 keV X-rays exposed TiO2 films and Ag/TiO2/p-Si MOS device,” Mater. Sci. Semicond. Process., vol. 63, pp. 107 – 114, Jun. 2017.
    DOI: 10.1016/j.mssp.2017.02.009
  22. L. Vlasukova et al., “Photoluminescence and enhanced chemical reactivity of amorphous SiO2 films irradiated with high fluencies of 133-MeV Xe ions,” Vacuum, vol. 141, pp. 15 – 21, Jul. 2017.
    DOI: 10.1016/j.vacuum.2017.03.007
  23. K. Agashe et al., “Effect of gamma irradiation on resistive switching of Al/TiO2/n+Si ReRAM,” Nucl. Instrum. Methods Phys. Res., vol. 403, pp. 38 – 44, Jul. 2017.
    DOI: 10.1016/j.nimb.2017.04.091
  24. B. M. Abu-Zied, A. M. Asiri, “Synthesis of Dy2O3 nanoparticles via hydroxide precipitation: effect of calcination temperature,” J. Rare Earths, vol. 32, no. 3, pp. 259 – 264, Mar. 2014.
    DOI: 10.1016/S1002-0721(14)60061-2
  25. B. L. Doyle, Displacement Damage Caused by Gamma-rays and Neutrons on Au and Se, Rep. SAND2014-19440 R, Sandia National Laboratories, Albuquerque (NM), USA, 2014.
    DOI: 10.2172/1177090
  26. I. G. Madiba et al., “Effects of gamma irradiations on reactive pulsed laser deposited vanadium dioxide thin films,” Appl. Surf. Sci., vol. 411, pp. 271 – 278, Jul. 2017.
    DOI: 10.1016/j.apsusc.2017.03.131
  27. Y. Jun-Feng et al., “The first-principles calculation of the effects oxygen defect on the electronic structure of SnO2,” in Proc. 2008 2nd IEEE International Nanoelectronics Conference, Shanghai, China, 2008.
    DOI: 10.1109/INEC.2008.4585569
  28. B. C. Lan, J. J. Hsu, S. Y. Chen, J. S. Bow, “Forming gas annealing on physical characteristics and electrical properties of Sr0.8Bi2Ta2O9/Al 2O3/Si capacitors,” J. Appl. Phys., vol. 94, no. 3, pp. 1877 – 1881, Aug. 2003.
    DOI: 10.1063/1.1588362
  29. A. Tataroğlu et al., “Electronic and optoelectronic properties of Al/coumarin doped Pr2Se3–Tl2Se/p-Si devices,” J. Mater. Sci.: Mater. Electron., vol. 29, no. 15, pp. 12561 – 12572, Aug. 2018.
    DOI: 10.1007/s10854-018-9372-x
  30. W. A. Hill, C. C. Coleman, “A single-frequency approximation for interface-state density determination,” Solid. State. Electron., vol. 23, no. 9, pp. 987 – 993, Sep. 1980.
    DOI: 10.1016/0038-1101(80)90064-7

Material Science


Erhan Budak, Serdar Hizarci, Ercan Yilmaz

Pages: 162–166

DOI: 10.37392/RapProc.2019.33

In the present study, boron carbide was prepared using boric acid and hazelnut shell activated carbon by a carbothermic reduction method at 1400 °C. Two different methods were applied to obtain activated carbon for this study; activated carbon production using hazelnut shells (I) and sulfuric acid treatment of hazelnut shells (II). The formation of boron carbide was proven by Fourier transformation infrared spectroscopy (FTIR) and X-ray diffraction(XRD), also the morphological examination was done by scanning electron microscopy (SEM). The average grain sizes were found as 30 and 7 nm for II and I, respectively. In addition, the calculated lattice parameters were closely matched with the reported values in the JCPDS card. It was found that hazelnut shells can be used as an alternative carbon source for boron carbide synthesis.
  1. F. Thévenot, “Boron carbide-A comprehensive review,” J. Eur. Ceram. Soc., vol. 6, no. 4, pp. 205 – 225, 1990.
    DOI: 10.1016/0955-2219(90)90048-K
  2. K. A. Schwetz, L. S. Sigl, L. Pfau, “Mechanical Properties of Injection Molded B4C-C Ceramics,” J. Solid State Chem., vol. 103, no. 1, pp. 68 – 76, Oct. 1997.
    DOI: 10.1006/jssc.1997.7316
  3. D. K. Bose, K. U. Nair, C. K. Gupta, “Production of High Purity Boron Carbide,” High Temp. Mater. Process., vol. 7, no. 2 – 3, pp. 133 – 140, 1986.
    DOI: 10.1515/HTMP.1986.7.2-3.133
  4. C. F. Bilsby, A. M. T. Bell, F. W. Morris, “Swelling of boron carbide under fast neutron irradiation,” in EMAG-MICRO 89, vol. 1, P. J. Goodhew, H. Y. Elder, Eds., Bristol, UK: Institute of Physics, 1990.
    Retrieved from: http://inis.iaea.org/search/search.aspx?orig_q=RN:23057613
    Retrieved on: Apr. 11, 2019
  5. A. Alizadeh, E. Taheri-Nassaj, N. Ehsani, “Synthesis of boron carbide powder by a carbothermic reduction method,” J. Eur. Ceram. Soc., vol. 24, no. 10 – 11, pp. 3227 – 3234, Sep. 2004.
    DOI: 10.1016/j.jeurceramsoc.2003.11.012
  6. Dj. Kosanović, Lj. Milovanović, S. Milovanović, A. Šaponjić, “Low-Temperature Synthetic Route for Boron Carbide Powder from Boric Acid-Citric Acid Gel Precursor,” Mater. Sci. Forum., vol. 555, pp. 255 – 260, Sep. 2007.
    DOI: 10.4028/www.scientific.net/msf.555.255
  7. A. Sinha, T. Mahata, B. P. Sharma, “Carbothermal route for preparation of boron carbide powder from boric acid-citric acid gel precursor,” J. Nucl. Mater., vol. 301, no. 2 – 3, pp. 165 – 169, Mar. 2002.
    DOI: 10.1016/S0022-3115(02)00704-3
  8. A. M. Hadian, J. A. Bigdeloo, “The effect of time, temperature and composition on boron carbide synthesis by sol-gel method,” J. Mater. Eng. Perform., vol. 17, no. 1, pp. 44 – 49, Feb. 2008.
    DOI: 10.1007/s11665-007-9125-0
  9. A. K. Khanra, “Production of boron carbide powder by carbothermal synthesis of gel material,” Bull. Mater. Sci., vol. 30, no. 2, pp. 93 – 96, Apr. 2007.
    DOI: 10.1007/s12034-007-0016-7
  10. T. R. Pilladi, K. Ananthansivan, S. Anthonysamy, “Synthesis of boron carbide from boric oxide-sucrose gel precursor,” Powder Technol., vol. 246, pp. 247 – 251, Sep. 2013.
    DOI: 10.1016/j.powtec.2013.04.055
  11. E. Çakır, C. Ergun, F. Ç. Şahin, İ. Erden, “In Situ Synthesis of B4C / TiB2 Composites from Low Cost Sugar Based Precursor,” Defect Diffus. Forum, vol. 297 – 301, pp. 52 – 56, Apr. 2010.
    DOI: 10.4028/www.scientific.net/DDF.297-301.52
  12. H. Konno, A. Sudoh, Y. Aoki, H. Habazaki, “Synthesis of C/B 4 C composites from sugar-boric acid mixed solutions,” Mol. Cryst. Liq. Cryst., vol. 386, no. 1, pp. 15 – 20, 2002.
    DOI: 10.1080/713738826
  13. M. G. Rodríguez, O. V. Kharissova, U. Ortiz-Méndez, “Formation of boron carbide nanofibers and nanobelts from heated by microwave,” Rev. Adv. Mater. Sci., vol. 7, no. 1, pp. 55 – 60, Jul. 2004.
    Retrieved from: http://www.ipme.nw.ru/e-journals/RAMS/no_1704/rodriguez/rodriguez.pdf
    Retrieved on: Jun. 18, 2019
  14. S. Mondal, A. K. Banthia, “Low-temperature synthetic route for boron carbide,” J. Eur. Ceram. Soc., vol. 25, no. 2 – 3, pp. 287 – 291, Dec. 2005.
    DOI: 10.1016/j.jeurceramsoc.2004.08.011
  15. M. Antadze et al., “Metal-ceramics based on nanostructured boron carbide,” Solid State Sci., vol. 14, no. 11 – 12, pp. 1725 – 1728, Nov. 2012.
    DOI: 10.1016/j.solidstatesciences.2012.08.004
  16. A. Demirbaş, “Relationships between lignin contents and fixed carbon contents of biomass samples,” Energy Convers. Manag., vol. 44, no. 9, pp. 1481 – 1486, Jun. 2003.
    DOI: 10.1016/S0196-8904(02)00168-1
  17. A. Aygün, S. Yenisoy-Karakaş, I. Duman, “Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties,” Microporous Mesoporous Mater., vol. 66, no. 2 – 3, pp. 189 – 195, Dec. 2003.
    DOI: 10.1016/j.micromeso.2003.08.028
  18. H. Uzun, E. G. Kaynak, E. Ibanoglu, S. Ibanoglu, “Chemical and structural variations in hazelnut and soybean oils after ozone treatments,” Grasas y Aceites, vol. 69, no. 2, Jun. 2018.
    DOI: 10.3989/gya.1098171
  19. S. Li, X. Chen, A. Liu, L. Wang, G. Yu, “Co-pyrolysis characteristic of biomass and bituminous coal,” Bioresour. Technol., vol. 179, pp. 414 – 420, Mar. 2015.
    DOI: 10.1016/j.biortech.2014.12.025
  20. A. O. Odeh, “Oualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks,” J. Fuel Chem. Technol., vol. 43, no. 2, pp. 129 – 137, Feb. 2015.
    DOI: 10.1016/s1872-5813(15)30001-3
  21. E. Aracri, C. D. Blanco, T. Tzanov, “An enzymatic approach to develop a lignin-based adhesive for wool floor coverings,” Green Chem., vol. 6, no. 5, Feb. 2014.
    DOI: 10.1039/c4gc00063c
  22. E. Pehlivan, “Production and Characterization of Activated Carbon From Pomegranate Pulp by Phosphoric Acid,” J. Turk. Chem. Soc. Sect. A: Chem., vol. 5, no. 2, pp. 1 – 8, 2018.
    DOI: 10.18596/jotcsa.370738
  23. J. Shu et al., “Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue,” RSC Adv., vol. 7, no. 24, pp. 14395 – 14405, Mar. 2017.
    DOI: 10.1039/c7ra00287d
  24. I. A. W. Tan, M. O. Abdullah, L. L. P. Lim, T. H. C. Yeo, “Surface Modification and Characterization of Coconut Shell-Based Activated Carbon Subjected to Acidic and Alkaline Treatments,” J. Appl. Sci. Process Eng., vol. 4, no. 2, pp. 186 – 194, 2017.
    DOI: 10.33736/jaspe.435.2017
  25. S. Wang, G. Q. Lu, “Effects of Oxide Promoters on Metal Dispersion and Metal-Support Interactions in Ni Catalysts Supported on Activated Carbon,” Ind. Eng. Chem. Res., vol. 36, no. 12, pp. 5103 – 5109, Dec. 1997.
    DOI: 10.1021/ie9703604
  26. Z. Xie, W. Guan, F. Ji, Z. Song, Y. Zhao, “Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology,” J. Chem., vol. 2014, Jun. 2014.
    DOI: 10.1155/2014/491912
  27. B. S. Girgis, Y. M. Temerk, M. M. Gadelrab, I. D. Abdullah, “X-ray Diffraction Patterns of Activated Carbons Prepared under Various Conditions,” Carbon Lett., vol. 8, no. 2, pp. 95 – 100, Jun. 2012.
    DOI: 10.5714/cl.2007.8.2.095
  28. T. K. Roy, C. Subramanian, A. K. Suri, “Pressureless sintering of boron carbide,” Ceram. Int., vol. 32, no. 3, pp. 227 – 233, Dec. 2006.
    DOI: 10.1016/j.ceramint.2005.02.008
  29. R. K. Dash, A. Nikitin, Y. Gogotsi, “Microporous carbon derived from boron carbide,” Microporous Mesoporous Mater., vol. 72, no. 1 – 3, pp. 203 – 208, Jul. 2004.
    DOI: 10.1016/j.micromeso.2004.05.001


Yasin Ergunt, Merve Pinar Kabukcuoglu, Ozden Basar Balbasi, Bengisu Yasar, Yunus Eren Kalay, Mehmet Parlak, Rasit Turan

Pages: 167–171

DOI: 10.37392/RapProc.2019.34

The study of Cd1-xZnxTe (Cadmium Zinc Telluride) bulk-crystal growth and surface processing technology at the Middle East Technical University (METU) began in 2012. The initial R&D efforts were started with the growing of CdZnTe ingots up to a size of 15 mm in diameter in a three-zone vertical Bridgman furnace located in a limited laboratory area of 15 m2. Following promising development in terms of single crystal yield and the crystal growth process, a new vertical gradient freeze (VGF) multi-zone furnace setup was designed and developed to accommodate the production of 60 mm diameter CdZnTe ingots. The entire furnace setup is located in a newly founded 90 m2 laboratory named the METU Crystal Growth Laboratory (METU-CGL) in 2013. The laboratory is fully dedicated to the CdZnTe material growth and surface processing technology. Currently, METU-CGL is capable of producing 60 mm diameter CdZnTe ingots with one large grain and a few small grains. CdZnTe material is continuously grown in order to serve as either a substrate material (Cd0.96Zn0.04Te) for infrared detectors or an active material (Cd0.90Zn0.10Te) for X-ray/Gamma-ray detectors. As a typical yield, 2-3 oriented wafers per radial slice are retrieved from the grown ingots. The target wafer dimensions are 20 mm x 20 mm; however, larger or smaller crystals can be obtained based on the application of interest. The crystalline quality of the produced crystals is way below 50 arcsec of FWHM (Full width at half maximum) values from the DCRC (Double crystal rocking curves) measurements and the EPD (Etch-pit density) values are typically mid-104/cm2. Infrared (IR) transmission of the home-grown CdZnTe crystals is exceeding 60% and stays constant within 2-20 µm wavelength interval showing that the crystals have low density of inclusions and precipitates. Not only limited to CdZnTe bulk growth technology, the METU-CGL is also capable of slicing and surface processing technologies including optimized lapping, rough mechanical polishing, and performing final chemo-mechanical polishing steps with extreme care regarding surface roughness and subsurface damage. Achievable surface roughness values of produced wafers are well below 0.5 nm (Rrms). Various state-of-the-art characterization techniques including HRTEM (High-resolution transmission electron microscopy) and APT (Atom probe tomography) were conducted to study nanoscale defects in CdZnTe as a material property. This paper reviews many aspects of CdZnTe bulk-growth, surface finishing, and characterization technologies at METU-CGL as well as the laboratory infrastructure itself.
  1. C. Szeles, “CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications,” Phys. Status Solidi, vol. 241, no. 3, pp. 783 – 790, Mar. 2004.
    DOI: 10.1002/pssb.200304296
  2. O. Limousine, “New trends in CdTe and CdZnTe detectors for X- and gamma-ray applications,” Nucl. Instrum. Methods Phys. Res. Sec. A, vol. 504, no. 1 – 3, pp. 24 – 37, May 2003.
    DOI: 10.1016/S0168-9002(03)00745-9
  3. Y. Eisen, A. Shor, “CdTe and CdZnTe materials for room-temperature X-ray and gamma ray detectors,” J. Cryst. Growth, vol. 184 - 185, pp. 1302 - 1312, Feb. 1998.
    DOI: 10.1016/S0022-0248(98)80270-4
  4. P. Capper, A. W. Brinkman, “Growth of CdTe, CdZnTe and CdTeSe by bulk methods,” in Properties of narrow Gap Cadmium-Based Compounds, P. Capper, Eds., London, UK: INSPEC, 1994., ch. B1.1, pp. 369 - 379.
    Retrieved from: http://bookfi.net/dl/1507963/37a1c1
    Retrieved on: Jul. 15, 2019
  5. J. MacKenzie, F. J. Kumar, H. Chen, “Advancements in THM-Grown CdZnTe for Use as substrates for HgCdTe,” J. Electron. Mater., vol.42, no. 11, pp. 3129 – 3132, Nov. 2013.
    DOI: 10.1007/s11664-013-2681-1
  6. A. Noda, H. Kurita, R. Hirano, “Bulk Growth of CdZnTe/CdTe Crystals,” in Mercury Cadmium Telluride: Growth, Properties, and Applications, P. Capper, J. W. Garland, Eds., 1st ed., Chichester, UK: Wiley, 2011., ch. 2, pp. 21 - 50.
    Retrieved from: http://bookfi.net/dl/1134035/734ccb
    Retrieved on: Jul. 15, 2019
  7. B. Yasar et al., “HRTEM Analysis of Crystallographic Defects in CdZnTe Single Crystal,” J. Electron. Mater., vol. 47, no. 1, pp. 778 – 784, Jan. 2018.
    DOI: 10.1007/s11664-017-5836-7


Sinan Oztel, Zeynel Abidin Sezer, Erhan Budak, Ercan Yilmaz

Pages: 172–175

DOI: 10.37392/RapProc.2019.35

The Pt-doped SnO2 thin film detector sensitivities for different gases including the propane, carbon dioxide, acetone, and oxygen have been investigated incorporating the structural evolution of the thin film. The crystallographic structure of the SnO2 layer significantly varied with increasing the Pt concentration and grain size of the film decrease with Pt content. The highest gas sensitivity of the films is exhibited for the oxygen gases. In addition, the oxygen sensitivity of the sensors increases with the Pt concentration up to a specific operating temperature. This variation may be due to the different contributions of the spillover and Fermi energy control mechanisms to sensor sensitivities. The present results have depicted that the sensor design should be carefully configured to promote the sensing responses of the gas sensors.
  1. T. Oyabu, “Sensing characteristics of SnO2 thin film gas sensor”, J. Appl. Phys., vol. 53, no. 4, pp. 2785 – 2787, Apr. 1982.
    DOI: 10.1063/1.331079
  2. H. Gu, Z. Wang, Y. Hu, "Hydrogen gas sensors based on semiconductor oxide nanostructures," Sensors (Basel), vol. 12, no. 5, pp. 5517 – 5550, Apr. 2012.
    DOI: 10.3390/s120505517
    PMid: 22778599
    PMCid: PMC3386698
  3. W. K. Choi et al., "H2 gas-sensing characteristics of SnOx sensors fabricated by a reactive ion-assisted deposition with/without an activator layer,” Sens. Actuators B-Chem., vol. 40, no. 1, pp. 21 – 27, May 1997.
    DOI: 10.1016/S0925-4005(97)80194-3
  4. C. Ling et al., "Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction," Nanoscale, vol. 9, no. 25, pp. 8848 – 8857, Jun 2017.
    DOI: 10.1039/c7nr03437g
    PMid: 28632267
  5. M. L. Olvera, R. Asomoza " SnO2 and SnO2:Pt thin films used as gas sensors," Sens. Actuators B-Chem., vol. 45, no. 1, pp. 49 – 53, Nov. 1997.
    DOI: 10.1016/S0925-4005(97)00269-4
  6. V. E. Bochenkov, G. B. Sergeev, "Sensitivity, Selectivity, and Stability of Gas-Sensitive Metal-Oxide Nanostructures", in Metal Oxide Nanostructures and their applications, vol. 3, Valencia (CA), USA: Amer. Sci. Publ., 2010., ch. 2, pp. 31 - 52.
    Retrieved from: http://www.chem.msu.ru/rus/books/2011/sergeev/all.pdf
  7. M. C. Cakir, "Investigation of Gas Sensing Application of Metal Oxide Thin Films", M.Sc. thesis, Hacettepe University, Graduate School of Science and Engineering, Ankara, Turkey, 2014.
  8. Y. Sun, X. Huang, F. Meng, J. Liu, "Study of inluencing factors of dynamic measurements based on SnO2 gas sensor," Sensors (Basel), vol. 4, no. 6, pp. 95 – 104, Aug. 2004.
    PMCid: PMC3954074
  9. S. Oztel, S. Kaya, E. Budak, E. Yilmaz, "Influences of platinum doping concentrations and operation temperatures on oxygen sensitivity of Pt/SnO2/Pt resistive gas sensors," J. Mater. Sci.: Mater. Electron., vol. 30, no. 15,pp. 14813 – 14821, Aug. 2019.
    DOI: 10.1007/s10854-019-01854-4

Medical Physics


Evgeniia S. Sukhikh, Andrey V. Vertinskiy, Leonid G. Sukhikh, Alexandr V. Taletsky, Mariya A. Tatarchenko

Pages: 176–180

DOI: 10.37392/RapProc.2019.36

Optimization of the applicators position is very important for uniform dose distribution in the case of lip cancer treated using brachytherapy methods. Depending on the patient’s anatomical data there are several possible positions of the applicators at different distances. The criterion of the choice of the best positions can be based on the tumour control probability concept that naturally takes into account both physical dose distribution and radiobiological effects. In this work, we present the results of the investigation of the influence of the distance between applicators implanted in the recommended range of distances (8-12 mm) on the value of tumour control probability in the case of lip cancer. According to our investigations the optimal distances amounted 9 and 10 mm between implants.
  1. J. L. Guinot y col., “Braquiterapia de alta tasa en el carcinoma escamoso de labio en estadios iniciales,Acta Otorrinolaringol. Esp., t. 67, núm. 5, págs. 282 – 287, Sep-Oct., 2016. (J. L. Guinot et al., “High dose rate brachytherapy in early stage squamous-cell carcinoma of the lip”, Acta Otorrinolaringol. Esp., vol. 67, no. 5, pp. 282 – 287, Sep-Oct., 2016.)
    DOI: 10.1016/j.otorri.2015.12.003
    PMid: 27063585
  2. A. R. Casino et al., “Brachytherapy in lip cancer,” Med. Oral Patol. Oral Cir. Bucal, vol. 11, no. 3, pp. 223 – 229, May. 2006.
    PMid: 16648757
  3. J. J. Mazeron et al., “GEC-ESTRO recommendations for brachytherapy for head and neck squamous cell carcinomas,” Radiother. Oncol., vol. 91, no. 2, pp. 150 – 156, Mar. 2009.
    DOI: 10.1016/j.radonc.2009.01.005
    PMid: 19329209
  4. Z. T. Nagy et al., “American Brachytherapy Society Task Group Report: Combined external beam irradiation and interstitial brachytherapy for base of tongue tumors and other head and neck sites in the era of new technologies,” Brachytherapy, vol. 16, no. 1, pp. 44 – 58, Aug. 2016.
    DOI: 10.1016/j.brachy.2016.07.005
    PMid: 27592129
  5. V. Tombolini et al., “Brachytherapy for squamous cell carcinoma of the lip. The experience of the Institute of Radiology of the University of Rome ‘La Sapienza’,” Tumori, vol. 84, no. 4, pp. 478 – 482, Jul-Aug. 1998.
    Retrieved from: https://www.ncbi.nlm.nih.gov/pubmed/9825000
  6. J. L. Guinot et al., “From low-dose-rate to high-dose-rate brachytherapy in lip carcinoma: Equivalent results but fewer complications,” Brachytherapy, vol. 12, no. 6, pp. 528 – 534, Jul. 2013.
    DOI: 10.1016/j.brachy.2013.05.007
    PMid: 23850275
  7. R. Bhalavat et al, “High-dose-rate interstitial brachytherapy in head and neck cancer: do we need a look back into a forgotten art - a single institute experience,” J. Contemp. Brachytherapy, vol. 9, no.2, pp. 124 – 131, Apr. 2017.
    DOI: 10.5114/jcb.2017.67147
    PMid: 28533800
    PMCid: PMC5437083
  8. G. Kovács, “Modern head and neck brachytherapy: from radium towards intensity modulated interventional brachytherapy,” J. Contemp. Brachytherapy, vol. 6, no. 4, pp. 404 – 416, Dec. 2014.
    DOI: 10.5114/jcb.2014.47813
    PMid: 25834586
    PMCid: PMC4300360
  9. Dose and Volume Specification for Reporting Interstitial Therapy, vol. 30, ICRU REPORT 58, ICRU
    DOI: 10.1093/jicru/os30.1.Report58
  10. D. J. Brenner, “The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction,” Semin. Radiat. Oncol., vol. 18, no. 4, pp. 234 – 239, Oct. 2008.
    DOI: 10.1016/j.semradonc.2008.04.004
    PMid: 18725109
    PMCid: PMC2750078
  11. M. Joiner, A. van der Kogel, Basic Clinical Radiobiology, 4th ed., London, UK: Hoder Arnold, 2009.
    Retraived from: http://en.bookfi.net/book/1206779
  12. MultiSource HDR User Guide. Eckert&Ziegler BEBIG GMbH, Germany,2006
  13. H. A. Azhari, F. Hensley, W. Schütte, G. A. Zakaria, “Dosimetric verification of source strength for HDR afterloading units with Ir-192 and Co-60 photon sources: Comparison of three different international protocols,” J. Med. Phys., vol. 37, no. 4, pp. 183 – 192, Oct. 2012.
    DOI: 10.4103/0971-6203.103603
    PMid: 23293449
    PMCid: PMC3532746
  14. Cases: Head and Neck: Oral Cavity: Tongue, eContour, USA, 2019.
    Retrieved from: https://econtour.org/cases/3;
    Retrieved on: Aug. 20, 2019
  15. MultiSource HDRplus User Giude, sonoTECH GmbH.
  16. Wolfram Mathematica, Wolfram Research, Champaign (IL), USA, 2019.
    Retrieved from: https://www.wolfram.com/mathematica/;
    Retrieved on: Aug. 20, 2019
  17. A. Niemierko, “Reporting and analyzing dose distributions: a concept of equivalent uniform dose,” Med. Phys., vol. 24, no. 1, pp. 103 – 110, Jan. 1997.
    DOI: 10.1118/1.598063
    PMid: 9029544
  18. A. Niemierko, “A unified model of tissue response to radiation,” in Proc. 41th annual meeting (AAPM), Nashville, Tennessee, USA, Jul. 1999.: Med Phys, 1999. p. 1100.
    Retraived from: https://www.aapm.org/meetings/99AM/pdf/2695-43467.pdf


Andrey V. Vertinskiy, Leonid G. Sukhikh, Evgeniia S. Sukhikh, Yana N. Sutygina

Pages: 181–186

DOI: 10.37392/RapProc.2019.37

This article describes some aspects of the implementation of the system in vivo dosimetry PerFraction with the linear accelerator Elekta Synergy Platform. The first results of in vivo dosimetry application are presented in comparison with the results of 3D phantom-based ArcCHECK dosimetry.
  1. H. Zhen, B. E. Nelms, W. A. Tome, “Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA,” Med. Phys., vol. 38, no. 10, pp. 5477 – 5489, Oct. 2011.
    DOI: 10.1118/1.3633904
    PMid: 21992366
  2. B. Mijnheer, S. Beddar, J. Izewska, C. Reft, “In vivo dosimetry in external beam radiotherapy,” Med. Phys., vol. 40, no. 7, Jul. 2013.
    DOI: 10.1118/1.4811216
    PMid: 23822404
  3. M. Sabet, F. W. Menk, P. B. Greer, “Evaluation of an a-Si EPID in direct detection configuration as a water-equivalent dosimeter for transit dosimetry,” Med. Phys., vol. 37, no. 4, pp. 1459 – 1467, Apr. 2010.
    DOI: 10.1118/1.3327456
    PMid: 20443467
  4. A. Mans et al., “Catching errors with in vivo EPID dosimetry,” Med. Phys., vol. 37, no. 6, pp. 2638 – 2644, Jun. 2010.
    DOI: 10.1118/1.3397807
    PMid: 20632575
  5. A. H. Zhuang, A. J. Olch, “Sensitivity study of an automated system for daily patient QA using EPID exit dose images,” J. Appl. Clin. Med. Phys., vol. 19, no. 3, pp. 114 – 124, May 2018.
    DOI: 10.1002/acm2.12303
    PMid: 29508529
    PMCid: PMC5978566
  6. C. Bojechko, M. Phillps, A. Kalet, E. C. Ford, “A quantification of the effectiveness of EPID dosimetry and software-based plan verification systems in detecting incidents in radiotherapy,” Med. Phys., vol. 42, no. 9, pp. 5363 – 5369, Sep. 2015.
    DOI: 10.1118/1.4928601
    PMid: 26328985
  7. I. Olaciregui-Ruiz, R. Rozendaal, B. Mijnheer, A. Mans, “Site-specific alert criteria to detect patient-related errors with 3D EPID transit dosimetry,” Med. Phys., vol. 46, no. 1, pp. 45 – 55, Jan. 2019.
    DOI: 10.1002/mp.13265
    PMid: 30372521
  8. S. Bresciani, L. Botez, A. Miranti, M. Stasi, “In Vivo dosimetry using CBCT and EPID device: analysis of sources of errors in VMAT treatments”, Radiother. Oncol., vol. 133, suppl. 1, pp. 249 – 250, Apr. 2019.
    DOI: 10.1016/S0167-8140(19)30904-1
  9. R. Jacques, J. Wong, R. Taylor, T. McNutt, ”Real-time dose computation: GPU-accelerated source modeling and superposition/convolution,” Med. Phys., vol. 38, no. 1, pp. 294 – 305, Jan. 2011.
    DOI: 10.1118/1.3483785
    PMid: 21361198
  10. S. Ahmed et al., “Validation of a GPU-Based 3D dose calculator for modulated beams,” J. Appl. Clin. Med. Phys., vol. 18, no. 3, pp. 73 – 82,May 2017.
    DOI: 10.1002/acm2.12074
    PMid: 28371377
    PMCid: PMC5689856
  11. EPID Dosimetry in SunCHECK™ Patient: EPID Calibration, Pre-Treatment QA and In-Vivo Monitoring, Sun Nucl. Corp., Melbourne (FL), USA.
    Retrieved from: https://www.sunnuclear.com/documents/whitepapers/EPID-Dosimetry_in-SC_Patient_021519.pdf
    Retrieved on: Dec. 12, 2018


Alena Demianovich, Dmitriy Sanin, Natalia Borysheva, Valeriya Martynova, Sergey Ivanov, Andrey Kaprin

Pages: 187–190

DOI: 10.37392/RapProc.2019.38

This research demonstrates the treatment of breast cancer with high dose rate (HDR) brachytherapy in the 34 Gy mode performed in 10 twice-a-day treatments, six hours apart over a period of five days. According to the protocol the maximum allowable radiation exposure for the skin did not exceed 34 Gy. By May 2019, 28 patients were treated with a mean follow-up of 10.5 months, with the median of the study being 11 months. Among these patients, 7 had shown toxic effects on the skin in the form of pigmentation. For these patients parameters such as Dmax, D0.01сс, D0.1сс, D1сс, and D2сс were analysed. Among the patients, some had the same values or higher but did not exhibit toxic effects. Therefore, the expected effects, as well as the results of treatment, are very individual and dependent on many factors. We can only try to minimise them. As a result, it is necessary to show care with values of Dmax ≥ 33 Gy, D0.01сс ≥ 32, D0.1сс ≥ 30, D1сс ≥ 27 and D2сс ≥ 24.
  1. Breast, IARC, Lyon, France, 2018.
    Retrieved from: https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf
    Retrieved on: Nov. 15, 2018
  2. J. A. Latorre et al., “Accelerated partial breast irradiation in a single 18 Gy fraction with high-dose-rate brachytherapy: preliminary results,” J. Contemp. Brachytherapy, vol. 10, no. 1, pp. 58 - 63, Feb. 2018.
    DOI: 10.5114/jcb.2018.73994
    PMid: 29619057
    PMCid: PMC5881592
  3. S. Ahmad et al., “Comparison of tumor and normal tissue dose for accelerated partial breast irradiation using an electronic brachytherapy eBx source and an Iridium‐192 source,” J. Appl. Clin. Med. Phys., vol. 11, no. 4, pp. 155 - 161, Sep. 2010.
    DOI: 10.1120/jacmp.v11i4.3301
    PMid: 21081891
    PMCid: PMC5720398
  4. M. Sinnatamby, V. Nagarajan, R. K. Sathyanarayana, G. Karunanidhi, V. Singhavajala, “Study of the dosimetric differences between 192Ir and 60Co sources of high dose rate brachytherapy for breast interstitial implant,” Rep. Pract. Oncol. Radiother., vol. 21, no. 5, pp. 453 - 459, Sep.-Oct. 2016.
    DOI: 10.1016/j.rpor.2016.03.005
    PMid: 27489516
    PMCid: PMC4949742
  5. M. Oshaghi, M. Sadeghi, S. R. Mahdavi, A. R. Shirazi, “A Comparison of Skin Dose Delivered with MammoSite and Multicatheter Breast Brachytherapy,” J. Biomed. Phys. Eng., vol. 3, no. 4, pp. 133 - 138, Dec. 2013.
    PMid: 25505759
    PMCid: PMC4204506
  6. J. Lasota, R. Kabacińska, R. Makarewicz, “Dose estimation for different skin models in interstitial breast brachytherapy,” J. Contemp. Brachytherapy, vol. 6, no. 2, pp. 200 - 207, Jun. 2014.
    DOI: 10.5114/jcb.2014.43167
    PMid: 25097562
    PMCid: PMC4105640
  7. K. Yoshida et al., “Case report of a dose-volume histogram analysis of rib fracture after accelerated partial breast irradiation: interim analysis of a Japanese prospective multi-institutional feasibility study,” J. Contemp. Brachytherapy, vol. 10, no. 3, pp. 274 - 278, Jun. 2018.
    DOI: 10.5114/jcb.2018.76983
    PMid: 30038649
    PMCid: PMC6052388
  8. G. L. Smith et al., “Association between treatment with brachytherapy vs whole-breast irradiation and subsequent mastectomy, complications, and survival among older women with invasive breast cancer,” JAMA Oncol., vol. 307, no. 17, pp. 1827 – 1837, May 2012.
    DOI: 10.1001/jama.2012.3481
    PMid: 22550197
    PMCid: PMC3397792
  9. J. Huo, S. H. Giordano, B. D. Smith, S. F. Shaitelman, G. L. Smith, “Contemporary Toxicity Profile of Breast Brachytherapy Versus External Beam Radiation After Lumpectomy for Breast Cancer,” Int. J. Radiat. Oncol. Biol. Phys., vol. 94, no. 4, pp. 709 - 718, Mar. 2016.
    DOI: 10.1016/j.ijrobp.2015.12.013
    PMid: 26972643
  10. J. W. Snider et al., “Projected Improvements in Accelerated Partial Breast Irradiation Using a Novel Breast Stereotactic Radiotherapy Device: A Dosimetric Analysis,” Technol. Cancer Res. Treat., vol. 16, no. 6, pp. 1031 - 1037, Jan. 2017.
    DOI: 10.1177/1533034617718961
    PMid: 28705082
    PMCid: PMC5762064
  11. M. Akhtari et al., “Clinical outcomes, toxicity, and cosmesis in breast cancer patients with close skin spacing treated with accelerated partial breast irradiation (APBI) using multi-lumen/catheter applicators,” J. Contemp. Brachytherapy, vol. 8, no. 6, pp. 497 - 504, Dec. 2016.
    DOI: 10.5114/jcb.2016.64830
    PMid: 28115955
    PMCid: PMC5241383
  12. V. Strnad et al., “ESTRO-ACROP guideline: Interstitial multi-catheter breast brachytherapy as Accelerated Partial Breast Irradiation alone or as boost - GEC-ESTRO Breast Cancer Working Group practical recommendations,” Radiother. Oncol., vol. 128, no. 3, pp. 411 - 420, Sep. 2018.
    DOI: 10.1016/j.radonc.2018.04.009
    PMid: 29691075
  13. C. Shah et al., “The American Brachytherapy Society consensus statement for accelerated partial-breast irradiation,” Brachytherapy, vol. 12, no. 4, pp. 267 - 277, Jul.-Aug. 2013.
    DOI: 10.1016/j.brachy.2013.02.001
    PMid: 23619524
  14. V. Strnad et al., “Recommendations from GEC ESTRO Breast Cancer Working Group (I): Target definition and target delineation for accelerated or boost Partial Breast Irradiation using multicatheter interstitial brachytherapy after breast conserving closed cavity surgery,” Radiother. Oncol., vol. 115, no. 3, pp. 342 - 348, Jun. 2015.
    DOI: 10.1016/j.radonc.2015.06.010
    PMid: 26104975
  15. T. Majora, et al, “Recommendations from GEC ESTRO Breast Cancer Working Group (II): Target definition and target delineation for accelerated or boost partial breast irradiation using multicatheter interstitial brachytherapy after breast conserving open cavity surgery,” Radiother. Oncol. vol. 118, no. 1, pp. 199 - 204, Jan. 2016.
    DOI: 10.1016/j.radonc.2015.12.006
    PMid: 26776444



Olga Girjoaba

Pages: 191–194

DOI: 10.37392/RapProc.2019.39

One of the topics recently proposed by the IAEA on the medical exposure to ionising radiation is the recurrent exposure of patients with chronic conditions, at short intervals, using highly irradiating procedures such as CT examinations and interventional cardiological and non-cardiological procedures. An IAEA study presents that the number of patients who have received cumulative effective doses (CED) in the 50-500 mSv range, over a period of 1-5 years, has increased a lot in recent years. Based on these considerations, we performed a study referring to the evaluation of CED due to recurrent CT exposures, performed with a CT unit GE Bright Speed 16, in a private medical center focused on the follow-up on the evolution of malignant diseases of the patients, during the treatment process. In our study, we used a local electronic system for individual registration of medical exposures, that provides information about patient data and also about scan parameters, including total dose-length product (DLP), for every exam performed. Based on this information, CED was evaluated for patients with recurrent exposure. We analyzed a patient group of 350 persons randomly chosen, that performed 500 CT examinations, 52 patients from the total number (14.8%) presenting recurrent exposures over a period of 1-5 years. All of the patients who performed recurrent exposure received a CED of more than 100 mSv. Most of the patients from the study are over 50 years old and most frequently only 2-4 exams per patient are performed, but there are also 6 patients who were scanned 8-10 times over a period of 1-5 years. For many patients, the time interval between consecutive scans is less than one year, meaning that an important radiation dose is received by the patient within a short time interval. To have a real image of CED for every patient from Romania, it is necessary to create an electronic system at the national level for individual registration of medical exposures. This electronic system must be available to every physician, from everywhere in the country and the ionising radiation exams must be indicated after a good analysis of information concerning the CED of every patient.
  1. Summary of the IAEA Technical Meeting on Radiation Exposure of Patients from Recurrent Radiological Imaging Procedures, IAEA, Vienna, Austria, 2019.
    Retrieved from: https://www.iaea.org/sites/default/files/19/04/rpop-tm_summary_final.pdf
    Retrieved on: Jul. 7, 2019
  2. European Guidance on Estimating Population Doses from Medical X-Ray Procedures, Radiation Protection no. 154, European Commission, Luxembourg, Luxembourg, 2008, pp. 23 – 43.
    Retrieved from: https://ec.europa.eu/energy/en/topics/nuclear-energy/radiation-protection/scientific-seminars-and-publications/radiation-protection-publications
    Retrieved on: Jul. 10, 2019
  3. The Council of European Union. (Dec. 5, 2013). Council Directive 2013/59/EURATOM. Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
    Retrieved from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF
    Retrieved on: Jul. 11, 2019


Soimita Suciu, Dana Dabala, Adrian Florea, Alexandra Sevastre-Berghian, Emanoil Surducan, Vasile Surducan, Camelia Neamtu

Pages: 195–201

DOI: 10.37392/RapProc.2019.40

Purpose: Due to the continuously rising number of mobile phone users of an increasingly younger age, our preliminary study aims to assess the possible neurobiological effects of chronic exposure to microwaves possessing frequencies and power levels similar to GSM signals. For this purpose, rats were irradiated in their daily habitat. Materials and Methods: Twenty male Wistar rats (3 months old) were exposed to GSM 860–890 MHz for 4 hours a day for 36 weeks. This group was compared with sham-exposed rats. The medium exposure value of the microwave field power density was ≈60 mW/m2 and medium whole body SAR ≈ 0.15 W/kg. Two types of behavioral tests (open field test and elevated pulse maze) and a transmission electron microscopy on brain samples were performed after 3 and 9 months of exposure, respectively. Results: Exposed rats exhibited decreased locomotor activity and increased emotionality as compared with sham-exposed animals. Transmission electron microscopy examination, performed after 3 and 9 months of exposure, showed neurodegenerative alterations in the hippocampus and the frontal cortex. Severity of the alterations seems to be related to the duration of exposure. Conclusions: These preliminary results suggest that long-term and low-dose cumulative microwave radiation could cause, in rats, ultrastructural changes in neurons, glia and stress behaviour. Further research is needed to investigate the interaction between mobile phone radiations and the central nervous system at the molecular level.
  1. H. Lai, A. Horita, A. W. Guy, “Microwave irradiation affects radial-arm maze performance in the rat,” Bioelectromagnetics, vol. 15, no. 2, pp. 95 - 104, 1994.
    DOI: 10.1002/bem.2250150202
    PMid: 8024608
  2. B. Wang, H. Lai, ”Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats,” Bioelectromagnetics, vol. 21, no. 1, pp. 52 - 56, Jan. 2000.
    DOI: 10.1002/(SICI)1521-186X(200001)21:1<52::AID-BEM8>3.0.CO;2-6
    PMid: 10615092
  3. B. L. Cobb, J. R. Jauchem, E. R. Adair, “Radial arm maze performance of rats following repeated low level microwave radiation exposure,” Bioelectromagnetics, vol. 25, no. 1, pp. 49 - 57, Jan. 2004.
    DOI: 10.1002/bem.10148
    PMid: 14696053
  4. Z. J. Sienkiewicz, R. P. Blackwell, R. G. Haylock, R. D. Saunders, B. L. Cobb, “Low-level exposure to pulsed 900 MHz microwave radiation does not cause deficits in the performance of a spatial learning task in mice,” Bioelectromagnetics, vol. 21, no. 3, pp. 151 – 158, Apr. 2000.
    DOI: 10.1002/(sici)1521-186x(200004)21:3<151::aid-bem1>3.0.co;2-q
    PMid: 10723014
  5. D. Dubreuil, T. Jay, J. M. Edeline, “Does head-only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks?,” Behav. Brain Res., vol. 129, no. 1 – 2, pp. 203 - 210, Feb. 2002.
    DOI: 10.1016/s0166-4328(01)00344-8
    PMid: 11809512
  6. H. Yamaguchi et al., “1439 MHz pulsed TDMA fields affect performance of rats in a T-maze task only when body temperature is elevated,” Bioelectromagnetics, vol. 24, no. 4, pp. 223 – 230, May 2003.
    DOI: 10.1002/bem.10099
    PMid: 12696082
  7. M. P. Ntzouni, A. Stamatakis, F. Stylianopoulou, L. H. Margaritis, “Short-term memory in mice is affected by mobile phone radiation,” Pathophysiology, vol. 18, no. 3, pp. 193 – 199, Jun. 2011.
    DOI: 10.1016/j.pathophys.2010.11.001
    PMid: 21112192
  8. J. C. Cassel, B. Cosquer, R. Galani, N. Kuster, “Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats,” Behav. Brain Res., vol. 155, no. 1, pp. 37 - 43, Nov. 2004.
    DOI: 10.1016/j.bbr.2004.03.031
    PMid: 15325777
  9. ICNIRP guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), ICNIRP, Oberschleissheim, Germany, 1988.
    Retrieved from: https://www.icnirp.org/cms/upload/publications/ICNIRPemfgdl.pdf
    Retrieved on: Jan 27, 2019
  10. ICNIRP Statement on the ”Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)”, ICNIRP, Oberschleissheim, Germany, 2009.
    Retrieved from: https://www.icnirp.org/cms/upload/publications/ICNIRPStatementEMF.pdf
    Retrieved on: Aug. 1, 2019
  11. Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz–300 GHz), ICNIRP 16/2009, ICNIRP, Oberschleissheim, Germany, 2009.
    Retrieved from: http://ocpm.qc.ca/sites/ocpm.qc.ca/files/pdf/P52/5z.pdf
    Retrieved on: May 8, 2019
  12. M. T. Gamberini, D. S. Rodrigues, D. Rodrigues, V. B. Pontes, “Effects of the aqueous extract of Pimpinella anisum L. seeds on exploratory activity and emotional behavior in rats using the open field and elevated plus maze tests,” J. Ethnopharmacol., vol. 168, pp. 45 – 49, Jun. 2015.
    DOI: 10.1016/j.jep.2015.03.053
    PMid: 25839118
  13. A. A. Walf, C. A. Frye, “Antianxiety and antidepressive behavior produced by physiological estradiol regimen may be modulated by hypothalamic–pituitary–adrenal axis activity,” Neuropsychopharmacology, vol. 30, no. 7, pp. 1288 – 1301, Jul. 2005.
    DOI: 10.1038/sj.npp.1300708
    PMid: 15756306
  14. A. A. Walf, C. A. Frye, “The use of the elevated plus maze as an assay of anxiety-related behavior in rodents,” Nat. Protoc., vol. 2, no. 2, pp. 322 – 328, Mar. 2007.
    DOI: 10.1038/nprot.2007.44
    PMid: 17406592
    PMCid: PMC3623971
  15. M. A Hayat, Principles and Techniques of Electron Microscopy: Biological Applications, 4th ed., Cambridge, UK: Cambridge Univ. Press, 2000.
    Retrieved from: https://archive.org/stream/PrinciplesTechniquesOfElectronMicroscopyVolume2/Hayat-PrinciplesTechniquesOfElectronM icroscopyVol2_djvu.txt
    Retrieved on: Mar. 29, 2019
  16. W. Bloom, D. W. Fawcet, “The nervous tissue” in A textbook of Histology, 10th ed., Philadelphia (PA), USA: W. B. Saunders Co., 1975, ch. 12, pp. 333 – 363.
    Retrieved from: https://trove.nla.gov.au/work/11587217?q&sort=holdings+desc&_=1574538277129&versionId=45416250
    Retrieved on: Dec. 29, 2018
  17. I. M. Watt, The Principles and Practice of Electron Microscop, 2nd ed., Cambridge, UK: Cambridge Univ. Press, 1997.
    Retrieved from: https://www.scribd.com/document/337211592/The-Principles-and-Practice-of-Electron-Microscopy
    Retrieved on: Sep. 13, 2019
  18. A. İkinci et al., “The Effects of Prenatal Exposure to a 900 Megahertz Electromagnetic Field on Hippocampus Morphology and Learning Behavior in Rat Pups,” NeuroQuantology, vol. 11, no. 4, pp. 582 – 590, Dec. 2003.
    DOI: 10.14704/nq.2013.11.4.699
  19. H. S. Aboul Ezz, Y. A. Khadrawy, N. A. Ahmed, N. M. Radwan, N. M. El Bakry, “The effect of pulsed electromagnetic radiation from mobile phone on the levels of monoamine neurotransmitters in four different areas of rat brain,” Eur. Rev. Med. Pharmacol. Sci., vol. 17, no. 13, pp. 1782 - 1788, Jul. 2013.
    PMid: 23852905
  20. K. Maaroufi et al., “Spatial learning, monoamines and oxidative stress in rats exposed to 900 MHz electromagnetic field in combination with iron overload,” Behav. Brain Res., vol. 258, pp. 80 – 89, Jan. 2014.
    DOI: 10.1016/j.bbr.2013.10.016
    PMid: 24144546
  21. I. Pavacic, I. Trosic, “In vitro testing of cellular response to ultra high frequency electromagnetic field radiation,” Toxicol. In Vitro., vol. 22, no. 5, pp. 1344 - 1348, Aug. 2008.
    DOI: 10.1016/j.tiv.2008.04.014
    PMid: 18513921
  22. V. S. S. S. Sajja, N. Hlavac, P. J. VandeVord, “Role of Glia in Memory Deficits Following Traumatic Brain Injury: Biomarkers of Glia Dysfunction,” Front. Integr. Neurosci., vol. 10, article no. 7, Feb. 2016.
    DOI: 10.3389/fnint.2016.00007
    PMid: 26973475
    PMCid: PMC4770450
  23. L. G. Salford, A. E. Brun, J. L. Eberhardt, L. Malmgren, B. R. Persson, “Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones,” Environ. Health Perspect., vol. 111, no. 7, pp. 881 – 883, Jun. 2003.
    DOI: 10.1289/ehp.6039
    PMid: 12782486
    PMCid: PMC1241519
  24. J. Tang et al., “Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats,”Brain Res., vol. 1601, pp. 92 - 101, Mar. 2015.
    DOI: 10.1016/j.brainres.2015.01.019
    PMid: 25598203



Bogdan Ile, Iosif Malaescu, Marius Spunei, Catalin Nicolae Marin, Serban Negru

Pages: 202–205

DOI: 10.37392/RapProc.2019.41

In radiotherapy certain types of cancer are encountered that occupy both the surface of the skin and the tissue underneath, which requires the use of attenuation materials in order to ensure correct treatment. Our research aim is to find materials that are more cost effective than the commercially available ones.
  1. E. C. Halperin, D. E. Wazer, C. A. Perez, L. W. Brady, Perez & Brady’s Principles and Practice of Radiation Oncology, 7th ed., Philadelphia (PA), USA: LWW/Wolters Kluwer, 2018, p. 47.
    Retrieved from: https://libgen.is/book/index.php?md5=5F6C5B8314A3DDC60EF2535DE1B3BC13
    Retrieved on: Jun. 15, 2019
  2. E. C. Halperin, D. E. Wazer, C. A. Perez, L. W. Brady, Perez & Brady’s Principles and Practice of Radiation Oncology, 7th ed., Philadelphia (PA), USA: LWW/Wolters Kluwer, 2018, p. 91.
    Retrieved from: https://libgen.is/book/index.php?md5=5F6C5B8314A3DDC60EF2535DE1B3BC13
    Retrieved on: Jun. 15, 2019
  3. Criteria for radiation oncology in multidisciplinary cancer management: report to the director of the National Cancer Institute, National Institutes of Health, American College of Radiology, Philadelphia (PA), USA, 1986.
  4. G. H. Perkins et al., “A custom three-dimensional electron bolus technique for optimization of postmastectomy irradiation,” Int. J. Radiat. Oncol. Biol. Phys., vol. 51, no. 4, pp. 1142 – 1151, Nov. 2001.
    DOI: 10.1016/s0360-3016(01)01744-8
    PMid: 11704339
  5. R. J. Kudchadker et al., “Electron conformal radiotherapy using bolus and intensity modulation,” Int. J. Radiat. Oncol. Biol. Phys., vol. 53, no. 4, pp. 1023 – 1037, Jul. 2002.
    DOI: 10.1016/s0360-3016(02)02811-0
    PMid: 12095572
  6. E. B. Podgorsak, “Treatment machines for external beam radiotherapy,” in Radiation oncology physics: a handbook for teachers and students, Vienna, Austria: IAEA, 2005, ch. 5, sec. 5.5, p. 136.
    Retrieved from:
    Retrieved on: Apr. 2, 2019
  7. E. B. Podgorsak, “External photon beams: physical aspects,” in Radiation oncology physics: a handbook for teachers and students, Vienna, Austria: IAEA, 2005, ch. 6, sec. 6.5, p. 170.
    Retrieved from:
    Retrieved on: Apr. 2, 2019
  8. F. M. Khan, J. P. Gibbons, Khan`s The Physics of Radiation Therapy, 5th ed., Philadelphia (PA), USA: LWW/Wolters Kluwer, 2014, p. 223.
    Retrieved from:
    Retrieved on: Apr. 2, 2019
  9. RTV-530 Gomma siliconica in pasta, Prochima, Colli al Metauro, Italia. (RTV-530 Paste silicone rubber, Prochima, Colli al Metauro, Italy.)
    Retrieved from: http://www.prochima.it/files/Gomma-siliconica-RTV-530_versione-5.pdf
    Retrieved on: May 5, 2019
  10. Cauciuc Cristal. (Crystal rubber.)
    Retrieved from: https://d5cafn4nbz2pc.cloudfront.net/documents/69be4bbd9cec70099706dc7a7d8e736d.pdf
    Retrieved on: Apr. 2, 2019
  11. Gomme siliconiche per stampi, Prochima, Colli al Metauro, Italia. (Silicone rubbers for molds, Prochima, Colli al Metauro, Italy.)
    Retrieved from: http://www.prochima.it/gomme-siliconiche-per-stampi.html
    Retrieved on: May 5, 2019
  12. ArcCHECK®& 3DVH®, Sun Nuclear Corporation, Melbourne (FL), USA.
    Retrieved from: https://www.sunnuclear.com/solutions/patientqa/arccheck3dvh
    Retrieved on: Mar. 10, 2019

Microwave, Laser, RF and UV radiations


A.M. Abdullaeva, L.P. Blinkova, I.G. Seryogin, D.I. Udavliev, S.S. Shikhov, Yu.D. Pakhomov

Pages: 206–211

DOI: 10.37392/RapProc.2019.42

In this work, we present data on efficiency of UV irradiation and its combination with ozone treatment for disinfection of drying chambers of dry smoked sausages that are subject to molding during storage. Biocide effect was created using UV irradiator OBN-150 and ozonator-irradiator OZUF. A study of the total number of microorganisms and molds before and after inactivation was conducted with exposition times of 30, 60 and 90 minutes. Biocide effect was stronger with longer exposition times. Molds were more resistant to the effect of irradiators than bacteria. As a result of 90-minute irradiation with OZUF apparatus we achieved death of approximately 90% of microbiota and more than 80% of molds. Shelf-life of dry smoked sausage without molding increased.
  1. И. Г. Серегин, Д. В. Никитченко, А. М. Абдуллаева, “О болезнях пищевого происхождения,” Вестник Российского университета дружбы народов. Серия: Aгрономия и животноводство, но. 4, стр. 101 – 107, 2015. (I. G. Seryogin, D. V. Nikitchenko, A. M. Abdullaeva, “About illness of foodborne diseases,” Bull. Peoples` Friendship University of Russia. Series: Agronomy and animal industries, no. 4, pp. 101 - 107, 2015.)
    DOI: 10.22363/2312-797X-2015-4-101-107
  2. Н. А. Соколова, А. М. Абдуллаева, М. Н. Лощинин, Возбудители зооантропонозов, пищевых отравлений, порчи сырья и продуктов животного происхождения, Москва, Россия: ДеЛи плюс, 2015. (N. A. Sokolova, A. M. Abdullaeva, M. N. Loshchinin, Pathogens of zooanthroponosis, food poisoning, spoilage of raw materials and products of animal origin, Moscow, Russia: DeLi plus, 2015.)
    Retrieved from: https://elibrary.ru/item.asp?id=24804630
    Retrieved on: May 18, 2019
  3. Ю. Г. Костенко, Руководство по санитарно-микробиологическим основам и предупреждению рисков при производстве и хранении мясной продукции, Москва, Россия: Tехносфера, 2015. (Yu. G. Kostenko “Guidance on the sanitary-microbiological basis and risk prevention in the production and storage of meat products,” Moscow, Russia: Technosphere, 2015.)
    Retrieved from: http://www.vniimp.ru/files/news/kostenko.pdf
    Retrieved on: Aug. 22, 2019
  4. А. М. Абдуллаева, И. Г. Серегин, Л. Б. Леонтьев, Н. А. Соколова, М. Н. Лощинин, “О бактериальной безопасности мяса птицы,” Ветеринария сельскохозяйственных животных, но. 11, стр. 41 – 49, 2017. (A. M. Abdullaeva, I. G. Seryogin, L. B. Leontyev, N. A. Sokolova, M. N. Loshchinin, “About bacterial safety of poultry meat,” Vet. farm anim., no 11, pp. 41 - 49, 2017.)
    Retrieved from: https://elibrary.ru/item.asp?id=36855580
    Retrieved on: Feb. 10, 2019
  5. J. D. Greig, A. Ravel, “Analysis of foodborne outbreak data reported internationally for source attribution,” Int. J. Food Microbiol., vol. 130, no. 2, pp. 77 – 87, Mar. 2009.
    DOI: 10.1016/j.ijfoodmicro.2008.12.031
    PMid: 19178974
  6. Л. С. Кузнецова, “Мицелиальные грибы – инициаторы микробной порчи мясной продукции,” Мясные технологии, но. 4, стр. 20 – 22, Апр. 2005. (L. S. Kuznetsova, “Mycelial fungi - initiators of microbial spoilage of meat products,” Meat technol., no. 4, pp. 20 - 22, Apr. 2005.)
    Retrieved from: http://www.meatbranch.com/magazine/archive/viewdoc/2005/4/50.html
    Retrieved on: Feb. 12, 2019
  7. А. Г. Снежко, М. И. Губанова, К. Г. Разумовского, “Эффективные составы для антимикробной обработки колбас,” Мясная индустрия, но. 3, стр. 19 – 21, 1999. (A. G. Snezhko, M. I. Gubanova, K. G. Razumovsky, “Antimicrobial protection of raw smoked sausages,” Meat Ind., no 3, pp. 19 - 21, 1999.)
    Retrieved from: http://meatind.ru/articles/1113/
    Retrieved on: Mar. 12, 2019
  8. А. М. Абдуллаева, И. Р. Смирнова, E. В. Tрохимец, A. A. Губанкова, “Микробиологический контроль полуфабрикатов из мяса индеек при холодильном хранении,” Ветеринария, но. 8, стр. 49 – 53, 2017. (A. M. Abdullaeva, I. R. Smirnova, E. V. Trochimetz, A. A. Gubankova, “Microbiological control of semi-finished products from meat turkeys in the modified gas medium and shrink-stretch film during refrigerated storage,” Vet. Sci., no. 8, pp. 49 - 53, 2017.)
    Retrieved from: https://elibrary.ru/item.asp?id=29800757
    Retrieved on: Sep. 24, 2019
  9. А. А. Прокопенко, Л. Ю. Юферев, “Эффективность применения уф облучателей – озонаторов "ОЗУФ" на объектах ветеринарного надзора,” материалы Экология и сельскохозяйственная техника, Санкт Петербург, Россия, 2005, стр. 262 – 266. (A. A. Prokopenko, L. Yu. Yuferev, “Ultra-violet installations performance on the objects of veterinary inspection,” in Proc. 4th Int. Sci. Pract. Conf., Saint Petersburg, Russia, 2005, pp. 262 – 266.)
    Retrieved from: https://elibrary.ru/item.asp?id=21434608
    Retrieved on: Jan. 1, 2019
  10. Общая и санитарная микробиология с техникой микробиологических исследований: Учебное пособие, А. С. Лабинской, Л. П. Блинковой, А. С. Ещиной, Под. Ред., 3-е изд., Санкт Петербург, Россия: Издательство Лань, 2019. (General and sanitary microbiology with the technique of microbiological research. Tutorial, A. S. Labinskaya, L. P. Blinkova, A. S. Eshchina, Eds., 3rd ed., Saint Petersburg, Russia: Lan publishers, 2019.)
    Retrieved from: https://rus.logobook.ru/prod_show.php?object_uid=2254526
    Retrieved on: Oct. 27, 2019

Pharmaceutical Sciences


O. A. Zlygosteva, S. Yu. Sokovnin, V. G. Ilves

Pages: 212–215

DOI: 10.37392/RapProc.2019.43

The physical and chemical properties of nanomaterials depend not only on the nature of the substance, but also on the size and shape of the particles, as well as the size and shape of the pores. In this paper, the methods for managing the textural properties of SiO2, SiO2-MnO2 nanopowders, produced by pulsed electron beam evaporation in vacuum, are investigated. The researched methods include doping at the stage of preparation and ultrasonic treatment of aqueous nanopowder suspensions. In addition, the radiation of CaF2 nanopowders by relativistic electrons was considered as a potential method for managing properties.
  1. Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, J. I. Zink, “Mesoporous silica nanoparticles in biomedical applications,” Chem. Soc. Rev., vol. 41, no. 7, pp. 2590 - 2605, Apr. 2012.
    DOI: 10.1039/c1cs15246g
    PMid: 22216418
  2. Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” J. Phys. D, vol. 36, no. 13, pp. 167 - 181, Jun. 2003.
    DOI: 10.1088/0022-3727/36/13/201
  3. S. Horikoshi, N. Serpone, “Introduction to Nanoparticles,” in Microwaves in nanoparticle synthesis: Fundamentals and applications, 1st ed., Berlin, Germany: Wiley-VCH, 2013, ch. 1, pp. 1 - 24.
    DOI: 10.1002/9783527648122
  4. M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra, J. Santamaría, “Magnetic nanoparticles for drug delivery,” Nano Today, vol. 2, no. 3, pp. 22 - 32, Jun. 2007.
    DOI: 10.1016/S1748-0132(07)70084-1
  5. O. A. Zlygosteva, S. Y. Sokovnin, V. G. Ilves, “The use of manganese-doped mesoporous silica nanopowder for targeted drug delivery,” J. Phys. Conf. Ser., vol. 1115, 2018.
    DOI: 10.1088/1742-6596/1115/4/042067
  6. Y. Li et al., “Hollow Mesoporous Silica Nanoparticles with Tunable Structures for Controlled Drug Delivery,” ACS Appl. Mater. Interfaces, vol. 9, no. 3, pp. 2123 - 2129, Jan. 2017.
    DOI: 10.1021/acsami.6b13876
    PMid: 28004570
  7. S. Iravani, H. Korbekandi, S. V. Mirmohammadi, B. Zolfaghari, “Synthesis of silver nanoparticles: chemical, physical and biological methods,” Res. Pharm. Sci., vol. 9, no. 6, pp. 385 - 406, Nov.-Dec. 2014.
    PMid: 26339255
    PMCid: PMC4326978
  8. S. Y. Sokovnin, V. G. Il`ves, M. G. Zuev, “Production of complex metal oxide nanopowders using pulsed electron beam in low-pressure gas for biomaterials application,” in Engineering of Nanobiomaterials: Applications of Nanobiomaterials, vol. 2, A. M. Grumezescu, Eds., 1st ed., Amsterdam, Netherlands: Elsevier Inc., 2016, ch. 2, pp. 29 - 75.
    DOI: 10.1016/C2015-0-00356-2
  9. О. А. Злыгостева, С. Ю. Соковнин, В. Г. Ильвес, “Оценка свойств мезопористого диоксида кремния, допированного диоксидом марганца, полученного импульсным электронным испарением, для применения в биомедицине,” Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов: межвуз. сб. науч. тр., т. 9, стр. 199 - 204, 2017. (O. A. Zlygosteva, S. Yu. Sokovnin, V. G Il’vec, “Properties evaluation of mesoporous silica nanopowders doped with manganese dioxide produced by a pulsed electron beam evaporation for biomedical applications,” Phys. Chem. Asp. Study of Clust., Nanostruct. Nanomater.: Collect. Pap., vol. 9, pp. 199 - 204, 2017.)
    DOI: 10.26456/pcascnn/2017.9.199
  10. V. G. Il’ves, M. G. Zuev, S. Y. Sokovnin, “Properties of Silicon Dioxide Amorphous Nanopowder Produced by Pulsed Electron Beam Evaporation,” J. Nanotechnol., vol. 2015, no. 18, pp. 1 - 8, Oct. 2015.
    DOI: 10.1155/2015/417817
  11. P. Tian et al., “TiO2/CaF2 composite coating on titanium for biomedical application,” Mater. Lett., vol. 117, pp. 98 - 100, Feb. 2014.
    DOI: 10.1016/j.matlet.2013.12.006
  12. S. Y. Sokovnin, M. E. Balezin, “Repetitive nanosecond electron accelerators type URT-1 for radiation technology,” Radiat. Phys. Chem., vol. 144, pp. 265 - 270, Mar. 2018.
    DOI: 10.1016/j.radphyschem.2017.08.023



Nataša Popović, Vesna Stojiljković, Snežana Pejić, Ana Todorović, Ivan Pavlović, Snežana B. Pajović and Ljubica Gavrilović

Pages: 216–219

DOI: 10.37392/RapProc.2019.44

The hypothalamic–pituitary–adrenal (HPA) axis plays an important role in the adaptation of the organism to stress. Because of a key role of neuroendocrine system in response to a stressful situation, as well as a significant impact of stress on neuronal plasticity, in this work we investigated how chronic restraint stress (CRS: 2 hours × 14 days) affected the protein levels of BDNF in the prefrontal cortex (PFC), as well as the concentration of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) in the plasma. In addition, the aim of this study was to determine a possible correlation between levels of BDNF in the PFC and plasma CORT levels of animals exposed to CRS. We found that CRS increases levels of prefrontal BDNF protein by 25% and levels of CORT by 280%, but decreases levels of ACTH by 18%. Also, we recorded a low, but significant positive correlation between prefrontal BDNF levels and concentrations of CORT in the plasma of chronically stressed rats. Our data confirm that prefrontal BDNF might be an important regulator involved in the adaptive strategy of the HPA axis to maintain adequate reactivity in stress conditions provoked by CRS.
  1. J. P. Herman et al., “Regulation of the hypothalamic-pituitary-adrenocortical stress response,” Compr. Physiol., vol. 6, no. 2, pp. 603 – 621, Mar. 2016.
    DOI: 10.1002/cphy.c150015
    PMid: 27065163
    PMCid: PMC4867107
  2. B. S. McEwen, “Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators,” Eur. J. Pharmacol., vol. 583, no. 2 - 3, pp. 174 - 185, Apr. 2008.
    DOI: 10.1016/j.ejphar.2007.11.071
    PMid: 18282566
    PMCid: PMC2474765
  3. G. Naert, G. Ixart, T. Maurice, L. Tapia-Arancibia, L. Givalois, “Brain-derived neurotrophic factor and hypothalamic–pituitary–adrenal axis adaptation processes in a depressive-like state induced by chronic restraint stress,” Mol. Cell. Neurosci., vol. 46, no. 1, pp. 55 - 66, Jan. 2011.
    DOI: 10.1016/j.mcn.2010.08.006
    PMid: 20708081
  4. S. Chiba et al., “Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex,” Prog. Neuro-Psychopharmacol. Biol. Psychiatry., vol. 39, no. 1, pp. 112 - 119, Oct. 2012.
    DOI: 10.1016/j.pnpbp.2012.05.018
    PMid: 22664354
  5. J. Klein et al.,“Lesion of the medial prefrontal cortex and the subthalamic nucleus selectively affect depression-like behavior in rats,” Behav. Brain Res., vol. 213, no. 1, pp. 73 - 81, Nov. 2010.
    DOI: 10.1016/j.bbr.2010.04.036
    PMid: 20434489
  6. R. M. Sullivan, A. Gratton, “Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats,” J. Neurosci., vol. 19, no. 7, pp. 2834 - 2840, Apr. 1999.
    DOI: 10.1523/JNEUROSCI.19-07-02834.1999
    PMid: 10087094
    PMCid: PMC6786056
  7. M. Ivković et al., “Predictive value of sICAM-1 and sVCAM-1 as biomarkers of affective temperaments in healthy young adults,” J. Affect. Disord., vol. 207, pp. 47 – 52, Jan. 2017.
    DOI: 10.1016/j.jad.2016.09.017
    PMid: 27693464
  8. N. Popović et al., “Relationship between behaviors and catecholamine content in prefrontal cortex and hippocampus of chronically stressed rats,” in Proc. 5th Int. Conf. Radiation and Applications in Various Fields of Research (RAD 2017), Budva, Montenegro, 2017, pp. 255 - 259.
    DOI: 10.21175/RadProc.2017.52
  9. N. Popović et al., “Modulation of Hippocampal Antioxidant Defense System in Chronically Stressed Rats by Lithium,” Oxid. Med. Cell. Longev., vol. 2019, Feb. 2019.
    DOI: 10.1155/2019/8745376
    PMid: 30911352
    PMCid: PMC6398005
  10. C. Phillips, “Brain-derived neurotrophic factor, depression, and physical activity: Making the neuroplastic connection,”Neural Plast., vol. 2017, Aug. 2017.
    DOI: 10.1155/2017/7260130
    PMid: 28928987
    PMCid: PMC5591905
  11. J. S. Dunham, J. F. W. Deakin, F. Miyajima, A. Payton, C. T. Toro, “Expression of hippocampal brain-derived neurotrophic factor and its receptors in Stanley consortium brains,” J. Psychiatr. Res., vol. 43, no. 14, pp. 1175 - 1184, Sep. 2009.
    DOI: 10.1016/j.jpsychires.2009.03.008
    PMid: 19376528
  12. T. Numakawa et al., “Production of BDNF by stimulation with antidepressant-related substances,” J. Biol. Med., vol. 1, no. 3, pp. 1 - 10, Jan. 2011.
    Retrieved from: https://www.researchgate.net/profile/Shuichi_Chiba/publication/249315928_Production_of_BDNF_by_Stimulation_with_ Antidepressant-related_Substances/links/0deec51e4a3240a9af000000/Production-of-BDNF-by-Stimulation-with-Antidepressant-related-Substances.pdf
    Retrieved on: Jan. 1, 2019
  13. L. Gavrilovic, N. Spasojevic, S. Dronjak, “Subsequent stress increases gene expression of catecholamine synthetic enzymes in cardiac ventricles of chronic-stressed rats,” Endocrine, vol. 37, no. 3, pp. 425 - 429, Jun. 2010.
    DOI: 10.1007/s12020-010-9325-5
    PMid: 20960163
  14. N. Popović et al., “Prefrontal catecholaminergic turnover and antioxidant defense system of chronically stressed rats,” Folia Biol., vol. 65, no. 1, pp. 43 - 54, Apr. 2017.
    DOI: 10.3409/fb65_1.43
  15. E. J. Whitworth, O. Kosti, D. Renshaw, J. P. Hinson, “Adrenal neuropeptides: regulation and interaction with ACTH and other adrenal regulators,” Microsc. Res. Tech., vol. 61, no. 3, pp. 259 – 267, Jun. 2003.
    DOI: 10.1002/jemt.10335
    PMid: 12768541
  16. K. Pacak, M. Palkovits, I. J. Kopin, D. S. Goldstein, “Stress-induced norepinephrine release in the hypothalamic paraventricular nucleus and pituitary-adrenocortical and sympathoadrenal activity: in vivo microdialysis studies,” Front. Neuroendocrinol., vol. 16, no. 2, pp. 89 – 150, Apr. 1995.
    DOI: 10.1006/frne.1995.1004
    PMid: 7621982
  17. E. Grazzini et al., “Vasopressin regulates adrenal functions by acting through different vasopressin receptor subtypes,” Adv. Exp. Med. Biol., vol. 449, pp. 325 - 334, 1998.
    DOI: 10.1007/978-1-4615-4871-3_41
    PMid: 10026821
  18. D. García-López et al., “Effects of strength and endurance training on antioxidant enzyme gene expression and activity in middle-aged men,” Scand. J. Med. Sci. Sports, vol. 17, no. 5, pp. 595 - 604, Oct. 2007.
    DOI: 10.1111/j.1600-0838.2006.00620.x
    PMid: 17316373
  19. G. Naert, G. Ixart, L. Tapia-Arancibia, L. Givalois, “Continuous i.c.v. infusion of brain-derived neurotrophic factor modifies hypothalamic-pituitary-adrenal axis activity, locomotor activity and body temperature rhythms in adult male rats,” Neuroscience, vol. 139, no. 2, pp. 779 - 789, May 2006.
    DOI: 10.1016/j.neuroscience.2005.12.028
    PMid: 16457953



S. Mitropoulos, V. Tsiantos, A. Americanos, I. Sianoudis, A. Skouroliakou

Pages: 220–224

DOI: 10.37392/RapProc.2019.45

The displays of the majority of electronic devices nowadays are illuminated by Light-Emitting Diodes (LEDs) or Organic Light-Emitting Diodes (OLEDs). These types of light sources have certain advantages regarding colour variety, contrast, resolution and the ability to construct thinner screens. Nevertheless, recent research raises concern of possible negative biological impact of these display types on visual health and the circadian rhythm. The biological basis of the concern lies in the emission spectra of the light sources. The white LEDs used as backlights in LED screens have a characteristic emission spectrum with a peak at 450 nm and the Red-Green-Blue (RGB) OLED emission spectrum has a blue peak. Both of them are very close to the 460nm where the melanopsin retina pigment presents the maximum absorption. In order to reduce the blue light emission several techniques have been developed including hardware adjustments, external filters and software applications that control the emission display characteristics. This study aims to record the performance of several available software applications on different mobile phone models. The spectral power distributions of the mobile phone screen were recorded by means of a commercial radiospectrometer, without and with the use of the blue light reducing software application, for various blue light filtering levels depending on the application. Several photometric and circadian parameters were calculated from the available spectra such as circadian light input, photopic illuminance and melatonin suppression index. The results of the study are the recordings of the respective differences in mobile screen output with and without the use of the blue light reduction application, presented in terms of spectral power and biologically relevant parameters. The analysis of the measuring procedure and the obtained results lead to an evaluation of the application performance variation depending on the mobile phone type and a standardised measurement protocol in order to have comparable results that could be used for blue light reducing software applications performance evaluation.
  1. M. S. Rea, M. G. Figueiro, A. Bierman, J. D. Bullough, “Circadian light,” J. Circadian Rhythms., vol. 8, no. 2, pp. 1 – 10, Feb. 2010.
    DOI: 10.1186/1740-3391-8-2
    PMid: 20377841
    PMCid: PMC2851666
  2. M. G. Figueiro, R. Hamner, A. Bierman, M. S. Rea, “Comparisons of three practical field devices used to measure personal light exposures and activity levels,” Ligh. Res. Technol., vol. 45, no. 4, pp. 421 - 434, Aug. 2013.
    DOI: 10.1177/1477153512450453
    PMid: 24443644
    PMCid: PMC3892948
  3. Opinion on Potential risks to human health of Light Emitting Diodes (LEDs), SCHEER, Brussels, Belgium, 2018.
    Retrieved from: https://ec.europa.eu/health/sites/health/files/scientific_committees/scheer/docs/scheer_o_011.pdf
    Retrieved on: Jul. 14, 2019.
  4. J. F. Duffy, C. A. Czeisler, “Effect of Light on Human Circadian Physiology,” Sleep Med. Clin., vol. 4, no. 2, pp. 165 - 177, Jun. 2009.
    DOI: 10.1016/j.jsmc.2009.01.004
    PMid: 20161220
    PMCid: PMC2717723
  5. G. Glickman, R. Levin, G. C. Brainard, “Ocular input for human melatonin regulation: relevance to breast cancer,” Neuro Endocrinol. Lett., vol. 23, suppl 2: pp. 17 - 22, Jul. 2002.
    PMid: 12163843
  6. G. C. Brainard et al., “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci., vol. 21, no. 16, pp. 6405 – 6412, Aug. 2001.
    PMid: 11487664
    PMCid: PMC6763155
  7. K. Thapan, J. Arendt, D. J. Skene, “An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans,” J. Physiol., vol. 535, no. 1, pp. 261 – 267, Aug. 2001.
    DOI: 10.1111/j.1469-7793.2001.t01-1-00261.x
    PMid: 11507175
    PMCid: PMC2278766
  8. M. Aubé, J. Roby, M. Kocifaj, “Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility,” PloS One, vol. 8, no. 7, pp. 1 - 15, Jul. 2013.
    DOI: 10.1371/journal.pone.0067798
    PMid: 23861808
    PMCid: PMC3702543
  9. F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage., vol. 92, no. 10, pp. 2714 – 2722, Oct. 2011.
    DOI: 10.1016/j.jenvman.2011.06.029
    PMid: 21745709
  10. M. S. Rea, M. G. Figueiro, “Light as a circadian stimulus for architectural lighting,” Light. Res. Technol., vol. 50, no. 4, Dec. 2016.
    DOI: 10.1177/1477153516682368
  11. Circadian stimulus calculator, Rensselaer Polytechnic Institute, Troy (NY), USA, 2018.
    Retrieved from: https://www.lrc.rpi.edu/cscalculator/
    Retrieved on: Feb. 12, 2019
  12. D. Gall, K. Bieske, “Definition and measurement of circadian radiometric quantities,” in Proc. CIE Symp. `04: Light and Health, Vienna, Austria, 2004, pp. 129 – 132.
    Retrieved from: http://www.cie.co.at/publications/cie-symposium-2004-light-and-health-non-visual-effects-30-september-2-october-2004
    Retrieved on: Apr. 11, 2019
  13. J. Escofet, S. Bara, “Reducing the circadian input from self-luminous devices using hardware filters and software applications,” Light. Res. Technol., vol. 49, no. 4, Dec. 2015.
    DOI: 10.1177/1477153515621946
  14. L. T. Sharpe, A. Stockman, W. Jagla, H. Jägle, “A luminous efficiency function, V*(lambda), for daylight adaptation,” J. Vis., vol. 5, no. 11, pp. 948 – 968, Dec. 2005.
    DOI: 10.1167/5.11.3
    PMid: 16441195